A. | 38 | B. | 39 | C. | 20 | D. | 19 |
分析 由等差數(shù)列的性質(zhì)可得:am-1+am+1=2am,可得2am-2${a}_{m}^{2}$=0,又S2m-1=$\frac{(2m-1)({a}_{1}+{a}_{2m-1})}{2}$=(2m-1)am=39,即可得出.
解答 解:由等差數(shù)列的性質(zhì)可得:am-1+am+1=2am,
∵am-1+am+1-2${a}_{m}^{2}$=0,∴2am-2${a}_{m}^{2}$=0,
解得am=0或1.
又S2m-1=$\frac{(2m-1)({a}_{1}+{a}_{2m-1})}{2}$=(2m-1)am=39,
因此只能取am=1.
∴(2m-1)×1=39,解得m=20.
故選:C.
點(diǎn)評 本題考查了等差數(shù)列的通項(xiàng)公式求和公式及其性質(zhì),考查了推理能力與計(jì)算能力,屬于中檔題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 4x0+θ0=0 | B. | 4x0+θ0<0 | C. | 4x0+θ0>0 | D. | 以上均有可能. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若直線l1與l2斜率相等,則l1∥l2 | |
B. | 若直線l1∥l2,則k1=k2 | |
C. | 若直線l1,l2的斜率不存在,則l1∥l2 | |
D. | 若兩條直線的斜率不相等,則兩直線不平行 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (0,$\frac{\sqrt{5}}{5}$) | B. | ($\frac{\sqrt{5}}{5}$,1) | C. | ($\frac{\sqrt{3}}{5}$,1) | D. | (0,$\frac{\sqrt{3}}{3}$) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com