6.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<3}\\{{2}^{x},x≥3}\end{array}\right.$,則f[f(2)]=( 。
A.2B.4C.8D.16

分析 直接利用分段函數(shù),逐步求解函數(shù)值即可.

解答 解:函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2},x<3}\\{{2}^{x},x≥3}\end{array}\right.$,
則f[f(2)]=f(22)=f(4)=42=16.
故選:D.

點評 本題考查分段函數(shù)的應(yīng)用,函數(shù)值的求法,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知tan(π+α)=-$\frac{1}{3}$,tan(α+β)=$\frac{sinα+2cosα}{5cosα-sinα}$.
(1)求tan(α+β)的值;
(2)求tanβ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.已知f(x)=sin(x+$\frac{π}{4}$)cos(x+$\frac{π}{4}$),g(x)=cos2(x-$\frac{π}{4}$)-$\frac{1}{2}$,則下列說法中正確的是(  )
A.函數(shù)f(x),g(x)的最小正周期都為2π
B.函數(shù)f(x),g(x)都是偶函數(shù)
C.將f(x)的圖象向左平移$\frac{π}{4}$個單位可以得到g(x)的圖象
D.將f(x)的圖象向右平移$\frac{π}{4}$個單位可以得到g(x)的圖象

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.如圖是一樣本的頻率分布直方圖,由圖形中的數(shù)據(jù)可以估計眾數(shù)與中位數(shù)分別是(  )
A.105,115B.105,105C.105,$\frac{310}{3}$D.115,115

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.有一底面半徑為1,高為2的圓柱,點O為這個圓柱底面圓的圓心,在這個圓柱內(nèi)隨機取一點P,則點P到點O的距離大于1的概率為( 。
A.$\frac{1}{3}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.若a、b為兩條異面直線,且分別在兩個平面α、β內(nèi),若α∩β=l,則直線l( 。
A.與a、b 都相交B.與a、b都不相交
C.至少與a、b中的一條相交D.至多與a、b中的一條相交

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.下列命題中為真命題的是( 。
A.若x≠0,則x+$\frac{1}{x}$≥2
B.“a=1”是“直線x-ay=0與直線x+ay=0互相垂直”的充要條件
C.若命題p:任意x∈R,x2-x+1<0,則¬p:存在x∈R,x2-x+1>0
D.命題:若x2=1,則x=1或x=-1的逆否命題為:若x≠1且x≠-1,則x2≠1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知函數(shù)f(x)=(2k-1)lnx+$\frac{k}{x}$+2x,k∈R.
(Ⅰ)當k=1時,求曲線y=f(x)在點(1,f(1))處的切線方程;
(Ⅱ)當k=e時,試判斷函數(shù)f(x)是否存在零點,并說明理由;
(Ⅲ)求函數(shù)f(x)的單調(diào)區(qū)間.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=|x-a|+|x+5|,
(Ⅰ)若a=1,解不等式:f(x)≥2|x+5|;
(Ⅱ)若f(x)≥8恒成立,求a的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案