分析 根據(jù)題意,將直線與圓的參數(shù)方程變形為普通方程,求出圓的圓心與半徑,進(jìn)而計(jì)算圓心到直線的距離,分析可得答案.
解答 解:根據(jù)題意,直線的參數(shù)方程為$\left\{\begin{array}{l}{x=4t}\\{y=-3+3t}\end{array}\right.$,則其普通方程為3x-4y-12=0,
圓的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=2sinθ}\end{array}\right.$,則其參數(shù)方程為x2+y2=4,圓心的坐標(biāo)為(0,0),半徑r=2,
圓心到直線的距離d=$\frac{|12|}{\sqrt{9+16}}$=$\frac{12}{5}$>2,
即直線與圓相離,
故答案為:相離.
點(diǎn)評(píng) 本題考查直線、圓的參數(shù)方程,關(guān)鍵是將直線、圓的參數(shù)方程變形為普通方程.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
交點(diǎn)數(shù) | 邊數(shù) | 區(qū)域數(shù) | |
(A) | 4 | 5 | 2 |
(B) | 5 | 8 | |
(C) | 12 | 5 | |
(D) | 15 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | m=2 | B. | m=-3 | C. | m=2或m=-3 | D. | m=1或m=-3 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①④ | B. | ③④ | C. | ①② | D. | ①③ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 20 | B. | 40 | C. | 80 | D. | 160 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{{\sqrt{29}}}{29}$ | B. | $\frac{{\sqrt{5}}}{5}$ | C. | -$\frac{{\sqrt{29}}}{29}$ | D. | $-\frac{{\sqrt{5}}}{5}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | (2,+∞) | B. | (0,$\frac{\sqrt{6}}{9}$) | C. | (-∞,-$\frac{4\sqrt{6}}{9}$) | D. | ($\frac{4\sqrt{6}}{9}$,+∞) |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com