14.四名同學(xué)根據(jù)各自的樣本數(shù)據(jù)研究變量x,y之間的相關(guān)關(guān)系,并求得回歸直線方程和相關(guān)系數(shù)r,分別得到以下四個(gè)結(jié)論:
①y=2.347x-6.423,且r=-0.9284;
②y=-3.476x+5.648,且r=-0.9533;
③y=5.437x+8.493,且r=0.9830; 
④y=-4.326x-4.578,且r=0.8997.
其中一定不正確的結(jié)論的序號(hào)是①④.

分析 根據(jù)回歸方程的一次項(xiàng)系數(shù)的正負(fù)與正相關(guān)或負(fù)相關(guān)的對(duì)應(yīng)關(guān)系,作出判斷即可.

解答 解:對(duì)于①,y=2.347x-6.423,且r=-0.9284;
由線性回歸方程知,此兩變量的關(guān)系是正相關(guān),r>0,∴①錯(cuò)誤;
對(duì)于②,y=-3.476x+5.648,且r=-0.9533;
線性回歸方程符合負(fù)相關(guān)的特征,r<0,∴②正確;
對(duì)于③,y=5.437x+8.493,且r=0.9830;
線性回歸方程符合正相關(guān)的特征,r>0,∴③正確;
對(duì)于④,y=-4.326x-4.578,且r=0.8997,
線性回歸方程符合負(fù)相關(guān)的特征,r<0,④錯(cuò)誤.
綜上,錯(cuò)誤的命題是①④.
故答案為:①④.

點(diǎn)評(píng) 本題考查了線性回歸方程與正相關(guān)還是負(fù)相關(guān)的判斷問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.設(shè)點(diǎn)M,N為圓x2+y2=9上兩個(gè)動(dòng)點(diǎn),且|MN|=4$\sqrt{2}$,若點(diǎn)P為線段3x+4y+15=0(xy≥0)上一點(diǎn),則|$\overrightarrow{PM}$+$\overrightarrow{PN}$|的最大值為( 。
A.4B.6C.8D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5. min(a,b)表示中的最小值.執(zhí)行如圖所示的程序框圖,若輸入的a,b值分別為6,4,則輸出的min(a,b)值是( 。
A.0B.1C.2D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.已知函數(shù)f(x)=Msin(ωx+φ)$(M>0,|φ|<\frac{π}{2},0<ω<3)$圖象上的一個(gè)最高點(diǎn)為$(\frac{2}{3}π,2)$,函數(shù)f(x)圖象與y軸交點(diǎn)為(0,1).
(Ⅰ)求M,ω,φ的值;
(Ⅱ)在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別是a,b,c,滿足(2a-c)cosB=bcosC,求函數(shù)f(A)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

9.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1({a>b>0})$的離心率為$\frac{{\sqrt{2}}}{2}$,焦距為2,直線y=kx(x≠0)與橢圓C交于A,B兩點(diǎn),M為其右準(zhǔn)線與x軸的交點(diǎn),直線AM,BM分別與橢圓C交于A1,B1兩點(diǎn),記直線A1B1的斜率為k1
(1)求橢圓C的方程;
(2)是否存在常數(shù)λ,使得k1=λk恒成立?若存在,求出λ的值;若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

19.如圖,橢圓E的左右頂點(diǎn)分別為A、B,左右焦點(diǎn)分別為F1、F2,$|{AB}|=4,|{{F_1}{F_2}}|=2\sqrt{3}$,
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)直線y=kx+m(k>0)交橢圓于C、D兩點(diǎn),與線段F1F2及橢圓短軸分別交于M、N兩點(diǎn)(M、N不重合),且|CN|=|DM|.求k的值;
(3)在(2)的條件下,若m>0,設(shè)直線AD、BC的斜率分別為k1、k2,求$\frac{{{k_1}^2}}{{{k_2}^2}}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.如圖所示,該偽代碼運(yùn)行的結(jié)果為9

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.將曲線的參數(shù)方程$\left\{\begin{array}{l}x=4\sqrt{t}+\frac{1}{{\sqrt{t}}}\\ y=4\sqrt{t}-\frac{1}{{\sqrt{t}}}\end{array}\right.(t$為參數(shù))化為普通方程為( 。
A.x2+y2=16B.x2+y2=16(x≥4)C.x2-y2=16D.x2-y2=16(x≥4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.已知f′(x)為函數(shù)f(x)的導(dǎo)函數(shù),且$f(x)=\frac{1}{2}{x^2}-f(0)+f'(1){e^{x-1}}$,若$g(x)=f(x)-\frac{1}{2}{x^2}+x$,則方程$g(\frac{x^2}{a}-x)-x=0$有且僅有一個(gè)根時(shí),a的取值范圍是( 。
A.[1,+∞)B.(-∞,1]C.(0,1]D.(-∞,0)∪{1}

查看答案和解析>>

同步練習(xí)冊(cè)答案