9.將某師范大學(xué)4名大學(xué)四年級學(xué)生分成2人一組,安排到A城市的甲、乙兩所中學(xué)進(jìn)行教學(xué)實(shí)習(xí),并推選甲校張老師、乙校李老師作為指導(dǎo)教師,則不同的實(shí)習(xí)安排方案共有(  )
A.24種B.12種C.6種D.10種

分析 根據(jù)題意,從4人中選出兩人去甲校實(shí)習(xí),余下兩人去乙校,所以安排方案有${C}_{4}^{2}$種.

解答 解:從4人中選出兩人去甲校,則余下的兩人去乙校,
所以實(shí)習(xí)安排方案共有:${C}_{4}^{2}$=6種.
故選:C.

點(diǎn)評 本題只需進(jìn)行分組,比較簡單.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.函數(shù)y=log5x的定義域( 。
A.(-∞,0)B.(-∞,0]C.(0,+∞)D.[0,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.$\frac{-2+5i}{6-3i}$=(  )
A.$\frac{9}{15}-\frac{8}{15}i$B.$\frac{9}{15}+\frac{8}{15}i$C.$-\frac{9}{15}-\frac{8}{15}i$D.$-\frac{9}{15}+\frac{8}{15}i$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知橢圓$C:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的上頂點(diǎn)B到兩焦點(diǎn)的距離和為4,離心率$e=\frac{{\sqrt{3}}}{2}$
(Ⅰ)求橢圓C的方程;
(Ⅱ)若點(diǎn)A為橢圓C的右頂點(diǎn),過點(diǎn)A作相互垂直的兩條射線,與橢圓C分別交于不同的兩點(diǎn)M,N(M,N不與左、右頂點(diǎn)重合),試判斷直線MN是否過定點(diǎn),若過定點(diǎn),求出該定點(diǎn)的坐標(biāo);若不過定點(diǎn),請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.若函數(shù)f(x)=lnx+2x-3,則f(x)的零點(diǎn)所在區(qū)間是( 。
A.(0,1)B.(1,2)C.(2,3)D.(3,4)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知關(guān)于x的方程x2+4x+p=0(p∈R)的兩個(gè)根是x1,x2
(1)若x1為虛數(shù)且|x1|=5,求實(shí)數(shù)p的值;
(2)若|x1-x2|=2,求實(shí)數(shù)p的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

1.已知雙曲線$\frac{{x}^{2}}{16}$-$\frac{{y}^{2}}{36}$=1上一點(diǎn)P(x,y)到雙曲線一個(gè)焦點(diǎn)的距離是9,則x2+y2的值是133.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.函數(shù)$y=\sqrt{-{x^2}-2x+3}$的增區(qū)間是( 。
A.[-3,-1]B.[-1,1]C.(-∞,-3]D.[-1,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.要得到函數(shù)f(x)=sin2x的圖象,只需將函數(shù)g(x)=cos2x的圖象(  )
A.向左平移$\frac{π}{2}$個(gè)周期B.向右平移$\frac{π}{2}$個(gè)周期
C.向左平移$\frac{π}{4}$個(gè)周期D.向右平移$\frac{π}{4}$個(gè)周期

查看答案和解析>>

同步練習(xí)冊答案