11.若向量$\overrightarrow{a}$=(1,0,z)與向量$\overrightarrow$=(2,1,2)的夾角的余弦值為$\frac{2}{3}$,則z等于( 。
A.0B.1C.-1D.2

分析 利用空間向量夾角余弦公式直接求解.

解答 解:∵向量$\overrightarrow{a}$=(1,0,z)與向量$\overrightarrow$=(2,1,2)的夾角的余弦值為$\frac{2}{3}$,
∴cos<$\overrightarrow{a},\overrightarrow$>=$\frac{\overrightarrow{a}•\overrightarrow}{|\overrightarrow{a}|•|\overrightarrow|}$=$\frac{2+2z}{\sqrt{1+{z}^{2}}•\sqrt{4+1+4}}$=$\frac{2}{3}$,
解得z=0.
故選:A.

點評 本題考查實數(shù)值的求法,考查空間向量夾角余弦公式等基礎(chǔ)知識,考查運算求解能力,是基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.橢圓$E:\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$經(jīng)過點A(-2,0),且離心率為$\frac{{\sqrt{2}}}{2}$.
(Ⅰ)求橢圓E的方程;
(Ⅱ)過點P(4,0)任作一條直線l與橢圓C交于不同的兩點M,N.在x軸上是否存在點Q,使得∠PQM+∠PQN=180°?若存在,求出點Q的坐標(biāo);若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.在參加某次社會實踐的學(xué)生中隨機選取40名學(xué)生的成績作為樣本,這40名學(xué)生的成績?nèi)吭?0分至100分之間,現(xiàn)將成績按如下方式分成6組:第一組,成績大于等于40分且小于50分;第二組,成績大于等于50分且小于60分;…第六組,成績大于等于90分且小于等于100分,據(jù)此繪制了如圖所示的頻率分布直方圖.在選取的40名學(xué)生中.
(Ⅰ)求a的值及成績在區(qū)間[80,90)內(nèi)的學(xué)生人數(shù).
(Ⅱ)從成績小于60分的學(xué)生中隨機選2名學(xué)生,求最多有1名學(xué)生成績在區(qū)間[50,60)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知以點C為圓心的圓經(jīng)過點A(-1,0)和B(3,4),且圓心C在直線x+3y-15=0上.
(Ⅰ)求圓C的方程;
(Ⅱ)設(shè)點P在圓C上,求△PAB的面積的最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.已知公比為q的等比數(shù)列{an}是遞減數(shù)列,且滿足a1+a3=$\frac{10}{9}$,a1a2a3=$\frac{1}{27}$.
(Ⅰ)求數(shù)列{an}的通項公式;
(Ⅱ)若bn=$\frac{3}{2}$-log3an,證明:$\frac{1}{_{1}_{2}}$+$\frac{1}{_{2}_{3}}$+…+$\frac{1}{_{n}_{n+1}}$<$\frac{2}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=$\sqrt{2}$sin(2x-$\frac{π}{4}$).
(Ⅰ)用“五點法”畫出函數(shù)y=f(x)區(qū)間[0,π]內(nèi)的圖象;
(Ⅱ)把f(x)的圖象向左平移$\frac{π}{4}$個單位,得到g(x)的圖象,求函數(shù)g(x)在[0,$\frac{π}{2}$]上的最小值及相應(yīng)x的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.直線l:2x+2y-1=0,拋物線C:y=$\frac{1}{2}$ax2的準(zhǔn)線及直線x=0圍成面積為$\frac{1}{32}$的一個三角形,則拋物線C:y=$\frac{1}{2}$ax2的焦點坐標(biāo)為(0,-$\frac{1}{4}$)或(0,-$\frac{3}{4}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.四邊形ABCD為矩形,AB=2,BC=1,O為AB的中點,在矩形ABCD內(nèi)隨機取一點,取到的點到O的距離大于或等于1的概率為(  )
A.$\frac{π}{4}$B.1-$\frac{π}{4}$C.$\frac{π}{8}$D.1-$\frac{π}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.若z=$\frac{i}{2+i}$,則復(fù)數(shù)$\overline{z}$對應(yīng)的點在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

同步練習(xí)冊答案