14.類比三角形內(nèi)角平分線定理:設(shè)△ABC的內(nèi)角A的平分線交BC于點(diǎn)M,則$\frac{AB}{AC}$=$\frac{BM}{MC}$,若在四面體P-ABC中,二面角B-PA-C的平分面PAD交BC于點(diǎn)D,你可得到的結(jié)論是$\frac{{S}_{△BDP}}{{S}_{△CDP}}$=$\frac{{S}_{△BPA}}{{S}_{△CPA}}$.

分析 三角形的內(nèi)角平分線定理類比到空間三棱錐,根據(jù)長度類比面積得到結(jié)論即可.

解答 解:在平面中在△ABC中,若AM是∠ACB的平分線,則$\frac{AB}{AC}$=$\frac{BM}{MC}$,
將這個(gè)結(jié)論類比到空間:在四面體P-ABC中,
則類比的結(jié)論為根據(jù)面積類比體積,長度類比面積可得:$\frac{{S}_{△BDP}}{{S}_{△CDP}}$=$\frac{{S}_{△BPA}}{{S}_{△CPA}}$,
故答案為:$\frac{{S}_{△BDP}}{{S}_{△CDP}}$=$\frac{{S}_{△BPA}}{{S}_{△CPA}}$.

點(diǎn)評(píng) 本題考查了類比推理,將平面中的性質(zhì)類比到空間.屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.在△ABC中,內(nèi)角A,B,C所對(duì)的邊分別為a,b,c.已知b=2,B=$\frac{π}{3}$,且△ABC的面積S=$\sqrt{3}$,則a+c=4.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

17.已知x、y∈R,4y2+4xy+x+16=0,求x的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.已知函數(shù)f(x)=x-1-mlnx(m∈R),f(x)≥0恒成立,則m的值為(-∞,0].

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.a(chǎn)2+b2與2a+2b-2的大小關(guān)系是( 。
A.a2+b2>2a+2b-2B.a2+b2<2a+2b-2C.a2+b2≤2a+2b-2D.a2+b2≥2a+2b-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.設(shè)a,b∈R.若直線l:ax+y-7=0在矩陣A=$[\begin{array}{l}{3}&{0}\\{-1}&\end{array}]$對(duì)應(yīng)的變換作用下,得到的直線為l′:9x+y-91=0.
(1)求實(shí)數(shù)a,b的值; 
(2)求出矩陣A的特征值及對(duì)應(yīng)一個(gè)的特征向量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.已知銳角α的終邊上一點(diǎn)P(1+cos50°,sin50°),則銳角α=25°.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=4-2t}\\{y=t-2}\end{array}\right.$(t為參數(shù)),P是橢圓$\frac{{x}^{2}}{4}$+y2=1上任意一點(diǎn),則點(diǎn)P到直線l的距離的最大值為( 。
A.$\frac{2\sqrt{5}}{5}$B.$\frac{2\sqrt{10}}{5}$C.2D.5

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.我國古代名著《莊子•天下篇》中有一句名言“一尺之棰,日取其半,萬世不竭”,其意思為:一尺的木棍,每天截取一半,永遠(yuǎn)都截不完.現(xiàn)將該木棍依此規(guī)律截取,如圖所示的程序框圖的功能就是計(jì)算截取7天后所剩木棍的長度(單位:尺),則①②③處可分別填入的是( 。
  ① ② ③
 A i≤7? s=s-$\frac{1}{i}$ i=i+1
 B i≤128? s=s-$\frac{1}{i}$ i=2i
 Ci≤7? s=s-$\frac{1}{2i}$ i=i+1
 D i≤128? s=s-$\frac{1}{2i}$ i=2i
A.AB.BC.CD.D

查看答案和解析>>

同步練習(xí)冊答案