A. | 48ln2 | B. | 40ln2 | C. | 32ln2 | D. | 24ln2 |
分析 由已知得f(1+x)+f(1-x)=0,由2+3ln2=1+(1+ln23),得到f(2+3ln2)=f[1+(1+ln23)]=-f(-ln23)=-2(-ln23)e${\;}^{ln{2}^{3}}$,由此能求出結果.
解答 解:∵f(x)是定義在R上的函數(shù),它的圖象關于點(1,0)對稱,
當x≤1時,f(x)=2xe-x(e為自然對數(shù)的底數(shù)),
∴f(1+x)+f(1-x)=0,
∵2+3ln2=2+ln23=1+(1+ln23),
∴f(2+3ln2)=f[1+(1+ln23)]=-f[1-(1+ln23)]=-f(-ln23)
=-2(-ln23)e${\;}^{ln{2}^{3}}$=16×3ln2=48ln2.
故選:A.
點評 本題考查函數(shù)值的求法,是中檔題,解題時要認真審題,注意函數(shù)性質的合理運用.
科目:高中數(shù)學 來源: 題型:選擇題
A. | f′(x)=6-3x2,g′(x)=ex | B. | f′(x)=-3x2,g′(x)=ex-1 | ||
C. | f′(x)=-3x2,g′(x)=ex | D. | f′(x)=6-3x2,g′(x)=ex-1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | a<b<c | B. | c<a<b | C. | c<a<b | D. | b<a<c |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-∞,-$\frac{1}{4{e}^{2}}$) | B. | (-∞,-$\frac{1}{e}$) | ||
C. | (-∞,-$\frac{1}{e}$)∪(-$\frac{1}{e}$,-$\frac{1}{4{e}^{2}}$) | D. | (-e,-$\frac{1}{4{e}^{2}}$)∪(1,+∞) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | ?x∈R,ex<x+1 | B. | ?x0∈R,ex0<x0+1 | C. | ?x0∈R,ex0≤x0+1 | D. | ?x∈R,ex0≥x0+1 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 2 | C. | 3 | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 充分不必要條件 | B. | 必要不充分條件 | ||
C. | 充要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com