【題目】如圖,在正四棱錐中,底面正方形的對角線交于點且
(1)求直線與平面所成角的正弦值;
(2)求銳二面角的大。
【答案】(1);(2).
【解析】
(1) 以分別為軸,軸,軸,建立空間直角坐標系, 設底面正方形邊長為再求解與平面的法向量,繼而求得直線與平面所成角的正弦值即可.
(2)分別求解平面與平面的法向量,再求二面角的余弦值判斷二面角大小即可.
解:在正四棱錐中,底面正方形的對角線交于點
所以平面取的中點的中點
所以兩兩垂直,故以點為坐標原點,
以分別為軸,軸,軸,建立空間直角坐標系.
設底面正方形邊長為
因為
所以
所以,
所以,
設平面的法向量是,
因為,,
所以,,
取則,
所以
所以,
所以直線與平面所成角的正弦值為.
設平面的法向量是,
因為,,
所以,
取則
所以,
由知平面的法向量是,
所以
所以,
所以銳二面角的大小為.
科目:高中數(shù)學 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護知識,某校開展了“疫情防護”網(wǎng)絡知識競賽活動.現(xiàn)從參加該活動的學生中隨機抽取了100名學生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計這100名學生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點值為代表);
(2)在抽取的100名學生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補充完整,并判斷是否有99%的把握認為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計 | |
男生 | 40 | ||
女生 | 50 | ||
合計 | 100 |
參考公式及數(shù)據(jù):.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知過點P(4,0)的動直線與拋物線C:交于點A,B,且(點O為坐標原點).
(1)求拋物線C的方程;
(2)當直線AB變動時,x軸上是否存在點Q使得點P到直線AQ,BQ的距離相等,若存在,求出點Q坐標,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知函數(shù).
(1)討論函數(shù)的單調(diào)性;
(2)判斷并說明函數(shù)的零點個數(shù).若函數(shù)所有零點均在區(qū)間內(nèi),求的最小值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】如圖,圓臺的軸截面為等腰梯形,圓臺的側(cè)面積為.若點分別為圓上的動點,且點在平面的同側(cè).
(1)求證:;
(2)若,則當三棱錐的體積取最大值時,求與平面所成角的正弦值.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知橢圓的左、右焦點分別為,離心率為,且在橢圓上運動,當點恰好在直線l:上時,的面積為.
(1)求橢圓的方程;
(2)作與平行的直線,與橢圓交于兩點,且線段的中點為,若的斜率分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知動圓Q經(jīng)過定點,且與定直線相切(其中a為常數(shù),且).記動圓圓心Q的軌跡為曲線C.
(1)求C的方程,并說明C是什么曲線?
(2)設點P的坐標為,過點P作曲線C的切線,切點為A,若過點P的直線m與曲線C交于M,N兩點,則是否存在直線m,使得?若存在,求出直線m斜率的取值范圍;若不存在,請說明理由.
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:
【題目】已知件次品和件正品混放在一起,現(xiàn)需要通過檢測將其區(qū)分,每次隨機檢測一件產(chǎn)品,檢測后不放回,直到檢測出件次品或者檢測出件正品時檢測結(jié)束.
(1)求第一次檢測出的是次品且第二次檢測出的是正品的概率;
(2)已知每檢測一件產(chǎn)品需要費用元,設表示直到檢測出件次品或者檢測出件正品時所需要的檢測費用(單位:元),求的分布列.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com