7.設(shè)復數(shù)z滿足$\frac{i}{1-i}$•z=1,則|z|=( 。
A.1B.5C.$\sqrt{2}$D.2

分析 利用兩個復數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運算性質(zhì),把復數(shù)化簡到最簡形式,利用復數(shù)的模的定義求出|z|.

解答 解:復數(shù)z滿足$\frac{i}{1-i}$•z=1,
∴z=$\frac{1-i}{i}$=$\frac{(1-i)i}{{i}^{2}}$=-1-i,
∴|z|=$\sqrt{(-1)^{2}+(-1)^{2}}$=$\sqrt{2}$,
故選:C

點評 本題考查兩個復數(shù)代數(shù)形式的乘除法,虛數(shù)單位i的冪運算性質(zhì),復數(shù)的模的定義和求法.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:填空題

17.已知向量$\overrightarrow m=({a,1,-b}),\overrightarrow n=({b,1,1})({a>0,b>0})$,若$\overrightarrow m⊥\overrightarrow n$,則$\frac{1}{a}+4b$的最小值為9.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

18.在直角坐標系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=-2+t}\\{y=-4+t}\end{array}}\right.$(t為參數(shù)).以原點O為極點,x軸正半軸為極軸,建立極坐標系,曲線C的極坐標方程為ρsin2θ=2cosθ.直線l交曲線C于A,B兩點.
(1)寫出直線l的極坐標方程和曲線C的直角坐標方程;
(2)設(shè)點P的直角坐標為(-2,-4),求點P到A,B兩點的距離之積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.“大眾創(chuàng)業(yè),萬眾創(chuàng)新”是李克強總理在本屆政府工作報告中向全國人民發(fā)出的口號.某生產(chǎn)企業(yè)積極響應號召,大力研發(fā)新產(chǎn)品,為了對新研發(fā)的一批產(chǎn)品進行合理定價,將該產(chǎn)品按事先擬定的價格進行試銷,得到一組銷售數(shù)據(jù)(xi,yi)(i=1,2,…,6),如表所示:
試銷單價x(元)456789
產(chǎn)品銷量y(件)q8483807568
已知$\overline{y}$=$\frac{1}{6}$$\sum_{i=1}^{6}{y}_{i}$=80
(Ⅰ)求出q的值;
(Ⅱ)已知變量x,y具有線性相關(guān)關(guān)系,求產(chǎn)品銷量y(件)關(guān)于試銷單價x(元)的線性回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\overrightarrow{a}$
(Ⅲ)用$\stackrel{∧}{{y}_{i}}$表示用正確的線性回歸方程得到的與xi對應的產(chǎn)品銷量的估計值.當銷售數(shù)據(jù)(xi,yi)的殘差的絕對值|$\stackrel{∧}{{y}_{i}}$-yi|≤1時,則將銷售數(shù)據(jù)(xi,yi)稱為一個“好數(shù)據(jù)”.現(xiàn)從6個銷售數(shù)據(jù)中任取2個,求抽取的2個銷售數(shù)據(jù)中至少有一個是“好數(shù)據(jù)”的概率.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.已知a是大于0的常數(shù),把函數(shù)y=ax和$y=\frac{1}{ax}+x$的圖象畫在同一坐標系中,選項中不可能出現(xiàn)的是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知f(x)是定義在R上的可導函數(shù),且滿足(x+1)f(x)+xf'(x)>0,則(  )
A.f(x)>0B.f(x)<0C.f(x)為減函數(shù)D.f(x)為增函數(shù)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.如圖,在△ABC中,點D在BC邊上,且CD=2DB,點E在AD邊上,且AD=3AE,則用向量$\overrightarrow{AB},\overrightarrow{AC}$表示$\overrightarrow{CE}$為(  )
A.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{8}{9}\overrightarrow{AC}$B.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{8}{9}\overrightarrow{AC}$C.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}+\frac{7}{9}\overrightarrow{AC}$D.$\overrightarrow{CE}=\frac{2}{9}\overrightarrow{AB}-\frac{7}{9}\overrightarrow{AC}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.$({{x^2}+1}){({\frac{1}{{\sqrt{x}}}-2})^5}$的展開式的常數(shù)項是( 。
A.5B.-10C.-32D.-42

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.在△ABC中,角A,B,C的對邊分別為a,b,c,已知$\frac{a}=\frac{cosB}{cosA}$,a=4,c=5.
(1)求邊b的長;
(2)若$\frac{a}>1$,點E,F(xiàn)分別在線段AB,AC上,當${S_{△AEF}}=\frac{1}{2}{S_{△ABC}}$時,求△AEF周長l的最小值.

查看答案和解析>>

同步練習冊答案