A. | f(x)>0 | B. | f(x)<0 | C. | f(x)為減函數(shù) | D. | f(x)為增函數(shù) |
分析 構(gòu)造函數(shù)g(x)=xexf(x),g′(x)=ex[(x+1)f(x)+x′(x)],可得函數(shù)g(x)在R上單調(diào)遞增,而g(0)=0
即x>0時,g(x)=xexf(x)>0⇒f(x)>0;x<0時,g(x)=xexf(x)<0⇒f(x)>0;在(x+1)f(x)+xf'(x)>0中取x=0,得f(0)>0.
解答 解:構(gòu)造函數(shù)g(x)=xexf(x),g′(x)=ex[(x+1)f(x)+x′(x)],
∵(x+1)f(x)+xf'(x)>0,∴g′(x)=ex[(x+1)f(x)+x′(x)]>0,
故函數(shù)g(x)在R上單調(diào)遞增,而g(0)=0
∴x>0時,g(x)=xexf(x)>0⇒f(x)>0;x<0時,g(x)=xexf(x)<0⇒f(x)>0;
在(x+1)f(x)+xf'(x)>0中取x=0,得f(0)>0.
綜上,f(x)>0.
故選:A.
點評 題考查了函數(shù)零點的判斷;本題的難點在于構(gòu)造新函數(shù)g(x)=xexf(x),通過求導判斷函數(shù)的單調(diào)性.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-$\frac{1}{4}$,0) | B. | (0,$\frac{1}{4}$) | C. | ($\frac{1}{4}$,$\frac{1}{2}$) | D. | ($\frac{1}{2}$,$\frac{3}{4}$) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{4}{5}$ | B. | $\frac{3}{4}$ | C. | $\frac{2}{3}$ | D. | $\frac{1}{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 1 | B. | 5 | C. | $\sqrt{2}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{{2\sqrt{13}}}{3}$ | B. | $\frac{{2\sqrt{13}}}{5}$ | C. | $\frac{{\sqrt{13}}}{5}$ | D. | $\frac{{\sqrt{13}}}{3}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com