12.已知f(x)是定義在R上的可導函數(shù),且滿足(x+1)f(x)+xf'(x)>0,則( 。
A.f(x)>0B.f(x)<0C.f(x)為減函數(shù)D.f(x)為增函數(shù)

分析 構(gòu)造函數(shù)g(x)=xexf(x),g′(x)=ex[(x+1)f(x)+x′(x)],可得函數(shù)g(x)在R上單調(diào)遞增,而g(0)=0
即x>0時,g(x)=xexf(x)>0⇒f(x)>0;x<0時,g(x)=xexf(x)<0⇒f(x)>0;在(x+1)f(x)+xf'(x)>0中取x=0,得f(0)>0.

解答 解:構(gòu)造函數(shù)g(x)=xexf(x),g′(x)=ex[(x+1)f(x)+x′(x)],
∵(x+1)f(x)+xf'(x)>0,∴g′(x)=ex[(x+1)f(x)+x′(x)]>0,
故函數(shù)g(x)在R上單調(diào)遞增,而g(0)=0
∴x>0時,g(x)=xexf(x)>0⇒f(x)>0;x<0時,g(x)=xexf(x)<0⇒f(x)>0;
在(x+1)f(x)+xf'(x)>0中取x=0,得f(0)>0.
綜上,f(x)>0.
故選:A.

點評 題考查了函數(shù)零點的判斷;本題的難點在于構(gòu)造新函數(shù)g(x)=xexf(x),通過求導判斷函數(shù)的單調(diào)性.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:解答題

2.設(shè)函數(shù)$f(x)=lnx+\frac{a-1}{x},g(x)=ax-3({a>0})$.
(1)求函數(shù)φ(x)=f(x)+g(x)的單調(diào)遞增區(qū)間;
(2)當a=1時,記h(x)=f(x)•g(x),是否存在整數(shù)λ,使得關(guān)于x的不等式2λ≥h(x)有解?若存在,請求出λ的最小值;若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.在下列區(qū)間中,函數(shù)f(x)=e-x+4x-3的零點所在的區(qū)間為(  )
A.(-$\frac{1}{4}$,0)B.(0,$\frac{1}{4}$)C.($\frac{1}{4}$,$\frac{1}{2}$)D.($\frac{1}{2}$,$\frac{3}{4}$)

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.在區(qū)間[-3,3]上隨機選取一個實數(shù)x,則事件“2x-3<0”發(fā)生的概率是( 。
A.$\frac{4}{5}$B.$\frac{3}{4}$C.$\frac{2}{3}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

7.設(shè)復數(shù)z滿足$\frac{i}{1-i}$•z=1,則|z|=( 。
A.1B.5C.$\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

17.已知△ABC的頂點A(1,0),點B在x軸上移動,|AB|=|AC|,且BC的中點在y軸上.
(Ⅰ)求C點的軌跡Γ的方程;
(Ⅱ)已知過P(0,-2)的直線l交軌跡Γ于不同兩點M,N,求證:Q(1,2)與M,N兩點連線QM,QN的斜率之積為定值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知函數(shù)f(x)=a(lnx-1)+$\frac{1}{x}$的圖象與x軸相切,g(x)=(b-1)logbx-$\frac{{{x^2}-1}}{2}$.
(Ⅰ)求證:f(x)≤$\frac{{{{(x-1)}^2}}}{x}$;
(Ⅱ)若1<x<$\sqrt$,求證:0<g(x)<$\frac{{{{(b-1)}^2}}}{2}$.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

1.已知雙曲線Γ:$\frac{x^2}{a^2}-\frac{y^2}{b^2}=1$(a>0,b>0)的一條漸近線為l,圓C:(x-a)2+y2=8與l交于A,B兩點,若△ABC是等腰直角三角形,且$\overrightarrow{OB}=5\overrightarrow{OA}$(其中O為坐標原點),則雙曲線Γ的離心率為(  )
A.$\frac{{2\sqrt{13}}}{3}$B.$\frac{{2\sqrt{13}}}{5}$C.$\frac{{\sqrt{13}}}{5}$D.$\frac{{\sqrt{13}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

2.已知函數(shù)$f(x)=|{x+\frac{1}{x}}$|(x≠0)
(1)求不等式f(x)<|x-1|的解集;
(2)若對?x∈(-∞,0)∪(0,+∞),不等式f(x)>|x-a|-|1+x|恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

同步練習冊答案