A. | $\frac{{\sqrt{3}π}}{2}$ | B. | 3π | C. | $\frac{{\sqrt{2}π}}{3}$ | D. | 2π |
分析 求出P到平面ABC的距離,AC為截面圓的直徑,由勾股定理可得R2=($\frac{\sqrt{3}}{2}$)2+d2=($\frac{1}{2}$)2+($\frac{\sqrt{2}}{2}$-d)2,求出R,即可求出球的表面積.
解答 解:由題意,AC為截面圓的直徑,AC=$\sqrt{3}$,
設(shè)球心到平面ABC的距離為d,球的半徑為R,
∵PA=PB=1,AB=$\sqrt{2}$,∴PA⊥PB,
∵平面PAB⊥平面ABC,∴P到平面ABC的距離為$\frac{\sqrt{2}}{2}$.
由勾股定理可得R2=($\frac{\sqrt{3}}{2}$)2+d2=($\frac{1}{2}$)2+($\frac{\sqrt{2}}{2}$-d)2,
∴d=0,R2=$\frac{3}{4}$,
∴球的表面積為4πR2=3π.
故選:B
點評 本題考查球的表面積,考查學生的計算能力,求出球的半徑是關(guān)鍵.屬于中檔題.
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | -2 | B. | 2 | C. | -2i | D. | 2i |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\sqrt{3}$ | B. | 2$\sqrt{3}$ | C. | $\sqrt{2}$ | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | 0 | B. | 1 | C. | 2 | D. | 3 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com