15.已知F是拋物線y2=2x的焦點(diǎn),A,B是該拋物線上的兩點(diǎn),|AF|+|BF|=11,則線段AB的中點(diǎn)到y(tǒng)軸的距離為( 。
A.3B.4C.5D.7

分析 求得拋物線的焦點(diǎn)坐標(biāo),根據(jù)拋物線的焦點(diǎn)弦公式,求得x1+x2=10,則線段AB的中點(diǎn)橫坐標(biāo)為$\frac{{x}_{1}+{x}_{2}}{2}$,即可求得線段AB的中點(diǎn)到y(tǒng)軸的距離.

解答 解:∵F是拋物線y2=2x的焦點(diǎn)F($\frac{1}{2}$,0),準(zhǔn)線方程x=-$\frac{1}{2}$,
設(shè)A(x1,y1),B(x2,y2
∴|AF|+|BF|=x1+$\frac{1}{2}$+x2+$\frac{1}{2}$=11
∴x1+x2=10,
∴線段AB的中點(diǎn)橫坐標(biāo)為$\frac{{x}_{1}+{x}_{2}}{2}$=5,
∴線段AB的中點(diǎn)到y(tǒng)軸的距離為5,
故選:C.

點(diǎn)評(píng) 本題考查解決拋物線上的點(diǎn)到焦點(diǎn)的距離問(wèn)題,利用拋物線的定義將到焦點(diǎn)的距離轉(zhuǎn)化為到準(zhǔn)線的距離是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.已知直線a、b和平面α、β,下列命題中假命題的是①②③④(只填序號(hào)).
①若a∥b,則a平行于經(jīng)過(guò)b的任何平面;
②若a∥α,b∥α,則a∥b;
③若a∥α,b∥β,且α⊥β,則a⊥b;
④若α∩β=a,且b∥α,則b∥a.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.德國(guó)數(shù)學(xué)家萊布尼茲發(fā)現(xiàn)了右面的單位分?jǐn)?shù)三角形,單位分?jǐn)?shù)是分子為1,分母為正整數(shù)的分?jǐn)?shù)稱為萊布尼茲三角形:根據(jù)前6行的規(guī)律,寫出第7行的第3個(gè)數(shù)是$\frac{1}{105}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.已知f(x)為偶函數(shù),g(x)=f(x)+x3,且g(2)=10,則g(-2)=-6.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)$f(x)=\frac{{{a^x}-1}}{{{a^x}+1}}(a>1),g(x)={3^x}$.
(1)若g(a+2)=81,求實(shí)數(shù)a的值,并判斷函數(shù)f(x)的奇偶性;
(2)用定義證明f(x)在R上的增函數(shù);
(3)求函數(shù)f(x)的值域.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

20.已知$\overline{z}$為復(fù)數(shù)z的共軛復(fù)數(shù),且(1-i)z=1+i,則$\overline{z}$為( 。
A.-iB.iC.1-iD.1+i

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.(1-x)(2x+1)4的展開(kāi)式中,x3的系數(shù)為8.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.已知λ∈R,向量$\overrightarrow{a}$=( 3,λ ),$\overrightarrow$=(λ-1,2),則“λ=$\frac{3}{5}$”是“$\overrightarrow{a}$⊥$\overrightarrow$”的(  )
A.充分不必要條件B.必要不充分條件
C.充要條件D.既不充分也不必要條件

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.函數(shù)f(x)=2|sinx|的最小正周期為( 。
A.B.$\frac{3π}{2}$C.πD.$\frac{π}{2}$

查看答案和解析>>

同步練習(xí)冊(cè)答案