分析 (Ⅰ)先求得不等式f(x)≤5 的解集,再根據(jù)它的解集為{x|-2≤x≤3},求得a的值.
(Ⅱ)把要解的不等式等價轉(zhuǎn)化為與之等價的三個不等式組,求出每個不等式組的解集,再取并集,即得所求.
解答 解:(Ⅰ)不等式f(x)≤5,即|2x-a|≤5,∴-5≤2x-a≤5,∴$\frac{a-5}{2}$≤x≤$\frac{a+5}{2}$.
再根據(jù)不等式f(x)≤5的解集為{x|-2≤x≤3},可得$\frac{a-5}{2}$=-2,且 $\frac{a+5}{2}$=3,可得a=1.
(Ⅱ)不等式f(x)-|x+2|>x+1,即|2x-1|≥|x+2|+x+1,
即 $\left\{\begin{array}{l}{x≤-2}\\{1-2x≥-1}\end{array}\right.$ ①,或 $\left\{\begin{array}{l}{-2<x<\frac{1}{2}}\\{1-2x≥2x+3}\end{array}\right.$②,或 $\left\{\begin{array}{l}{x≥\frac{1}{2}}\\{2x-1≥2x+3}\end{array}\right.$③.
解①求得x≤-2,解②求得-2<x≤-$\frac{1}{2}$,解③求得x∈∅,
綜上可得,原不等式的解集為{x x≤-$\frac{1}{2}$}.
點評 本題主要考查絕對值三角不等式,絕對值不等式的解法,體現(xiàn)了轉(zhuǎn)化、分類討論的數(shù)學(xué)思想,屬于基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 54 | B. | 5×4×3×2 | C. | 45 | D. | 5×4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $8\sqrt{3}π$ | B. | $16\sqrt{3}π$ | C. | $({8\sqrt{3}+3})π$ | D. | $({16\sqrt{3}+12})π$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
語文優(yōu)秀 | 語文不優(yōu)秀 | 總計 | |
外語優(yōu)秀 | 16 | 10 | |
外語不優(yōu)秀 | 14 | ||
總計 |
p(K2≥k0) | 0.010 | 0.005 | 0.001 |
k0 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 7 | B. | 13 | C. | 25 | D. | 49 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com