9.等比數(shù)列{an}中各項均為正數(shù),Sn是其前n項和,且滿足2S3=8a1+3a2,a4=16,則S4=(  )
A.9B.15C.18D.30

分析 設等比數(shù)列{an}的公比為q>0,由2S3=8a1+3a2,可得2(a1+a2+a3)=8a1+3a2,化為:2q2-q-6=0,解得q,進而得出.

解答 解:設等比數(shù)列{an}的公比為q>0,∵2S3=8a1+3a2,
∴2(a1+a2+a3)=8a1+3a2,化為:2a3=6a1+a2,可得$2{a}_{1}{q}^{2}$=6a1+a1q,化為:2q2-q-6=0,解得q=2.
又a4=16,可得a1×23=16,解得a1=2.
則S4=$\frac{2×({2}^{4}-1)}{2-1}$=30.
故選:D.

點評 本題考查了等比數(shù)列的通項公式與求和公式,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

19.已知橢圓$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$過點(3,2),當a2+b2取得最小值時,橢圓的離心率為(  )
A.$\frac{1}{2}$B.$\frac{{\sqrt{2}}}{2}$C.$\frac{{\sqrt{3}}}{2}$D.$\frac{{\sqrt{3}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

20.雙曲線E:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的一個焦點F到E的漸近線的距離為$\sqrt{3}a$,則E的離心率是( 。
A.$\sqrt{2}$B.$\frac{3}{2}$C.2D.3

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.某幾何體的三視圖如圖所示,則其表面積為( 。
A.$12+2\sqrt{2}$B.$8+2\sqrt{2}$C.$4+4\sqrt{2}$D.$8+4\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

4.已知F1,F(xiàn)2分別是長軸長為$2\sqrt{2}$的橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1\;(a>b>0)$的左右焦點,A1,A2是橢圓C的左右頂點,P為橢圓上異于A1,A2的一個動點,O為坐標原點,點M為線段PA2的中點,且直線PA2與OM的斜率之積恒為$-\frac{1}{2}$.
(1)求橢圓C的方程;
(2)設過點F1且不與坐標軸垂直的直線l交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點N,點N橫坐標的取值范圍是$(-\frac{1}{4},0)$,求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

14.已知橢圓C:$\frac{x^2}{a^2}+{y^2}=1\;(a>0)$,F(xiàn)1,F(xiàn)2分別是其左、右焦點,以F1F2為直徑的圓與橢圓C有且僅有兩個交點.
(1)求橢圓C的方程;
(2)設過點F1且不與坐標軸垂直的直線l交橢圓于A,B兩點,線段AB的垂直平分線與x軸交于點P,點P橫坐標的取值范圍是$(-\frac{1}{4},0)$,求線段AB長的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

1.已知等比數(shù)列{an}中,a2a4=a5,a4=8,則公比q=2,其前4項和S4=15.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.已知$\overrightarrow{a}$=(2+sin x,1),$\overrightarrow$=(2,-2),$\overrightarrow{c}$=(sin x-3,1),$\overrightarrowdwgqs5z$=(1,k)(x∈R,k∈R).
(1)若x∈[-$\frac{π}{2}$,$\frac{π}{2}$],且$\overrightarrow{a}$∥($\overrightarrow$+$\overrightarrow{c}$),求x的值;
(2)若函數(shù)f(x)=$\overrightarrow{a}$•$\overrightarrow$,求f(x)的最小值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

6.已知數(shù)列{an}是等比數(shù)列,若${a_2}=1,{a_5}=\frac{1}{8}$,則${a_1}{a_2}+{a_2}{a_3}+…+{a_n}{a_{n+1}}({n∈{N^*}})$的取值范圍是( 。
A.$({\frac{2}{3},2}]$B.$[{1,\frac{8}{3}})$C.$[{2,\frac{8}{3}})$D.$({-∞,\frac{8}{3}})$

查看答案和解析>>

同步練習冊答案