19.已知a>0,函數(shù)f(x)=ax2+bx+c,若x0滿足2ax0+b=0,則下列選項(xiàng)中是假命題的是( 。
A.?x∈R,f(x)≤f(x0B.?x∈R,f(x)≥f(x0C.?x∈R,f(x)≤f(x0D.?x∈R,f(x)≥f(x0

分析 由拋物線的性質(zhì)可得開口向上,x0=-$\frac{2a}$為拋物線的對(duì)稱軸,逐個(gè)選項(xiàng)驗(yàn)證可得.

解答 解:∵a>0,∴f(x)=ax2+bx+c所對(duì)應(yīng)的拋物線開口向上,
又∵x0滿足關(guān)于x的方程2ax+b=0,∴x0=-$\frac{2a}$為拋物線的對(duì)稱軸,
∴f(x0)為二次函數(shù)f(x)的最小值,
A、?x∈R,f(x)≤f(x0)正確;
B、?x∈R,f(x)≥f(x0) 正確;   
C、?x∈R,f(x)≤f(x0)錯(cuò)誤;
D、?x∈R,f(x)≥f(x0)正確.
故選:C.

點(diǎn)評(píng) 本題考查命題真假的判斷,涉及二次函數(shù)的性質(zhì)和特稱命題以及全稱命題,屬基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.設(shè)過(guò)拋物線y2=4x的焦點(diǎn)F的直線l交拋物線于點(diǎn)A,B,若以AB為直徑的圓過(guò)點(diǎn)P(-1,2),且與x軸交于M(m,0),N(n,0)兩點(diǎn),則mn=( 。
A.3B.2C.-3D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.設(shè)a>0,b>0,若log4($\frac{1}{a}$+$\frac{1}$)=log2$\sqrt{\frac{1}{ab}}$,則$\frac{1}{a}$+$\frac{1}$的最小值為( 。
A.8B.4C.1D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

7.平面上兩點(diǎn)F1,F(xiàn)2滿足|F1F2|=4,設(shè)d為實(shí)數(shù),令Γ表示平面上滿足||PF1|+|PF2||=d的所有P點(diǎn)組成的圖形,又令C為平面上以F1為圓心、1為半徑的圓.則下列結(jié)論中,其中正確的有②③⑤(寫出所有正確結(jié)論的編號(hào)).
①當(dāng)d=4時(shí),Γ為直線;
②當(dāng)d=5時(shí),Γ為橢圓;
③當(dāng)d=6時(shí),Γ與圓C交于三點(diǎn);
④當(dāng)d>6時(shí),Γ與圓C交于兩點(diǎn);
⑤當(dāng)d<4時(shí),Γ不存在.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

14.已知實(shí)數(shù)x、y的取值如表所示
x0134
y1234.4
(1)請(qǐng)根據(jù)表數(shù)據(jù)在下面網(wǎng)格紙中繪制散點(diǎn)圖;
(2)請(qǐng)根據(jù)表提供的數(shù)據(jù),用最小二乘法求出y關(guān)于x的線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.某中學(xué)對(duì)高三年級(jí)進(jìn)行身高統(tǒng)計(jì),測(cè)量隨機(jī)抽取的20名學(xué)生的身高,其頻率分布直方圖如圖(單位:cm)
(1)求a的值
(2)根據(jù)頻率分布直方圖,求出這20名學(xué)生身高中位數(shù)的估計(jì)值和平均數(shù)的估計(jì)值.
(3)在身高為140-160的學(xué)生中任選2個(gè),求至少有一人的身高在150-160之間的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知二次函數(shù)f(x)=x2+2bx+c(b,c∈R)滿足f(1)=0,且關(guān)于x的方程f(x)+x+b=0的兩個(gè)實(shí)數(shù)根分別在區(qū)間(-3,-2),(0,1)內(nèi),則實(shí)數(shù)b的取值范圍為($\frac{1}{5}$,$\frac{5}{7}$).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.為了響應(yīng)我市“創(chuàng)建宜居港城,建設(shè)美麗莆田”,某環(huán)保部門開展以“關(guān)愛木蘭溪,保護(hù)母親河”為主題的環(huán)保宣傳活動(dòng),經(jīng)木蘭溪流經(jīng)河段分成10段,并組織青年干部職工對(duì)每一段的南、北兩岸進(jìn)行環(huán)保綜合測(cè)評(píng),得到分值數(shù)據(jù)如表:
南岸77928486747681718587
北岸72877883838575899095
(1)記評(píng)分在80以上(包括80)為優(yōu)良,從中任取一段,求在同一段中兩岸環(huán)保評(píng)分均為優(yōu)良的概率;
(2)根據(jù)表中的數(shù)據(jù)完成莖葉圖:
(3)分別估計(jì)兩岸分值的中位數(shù),并計(jì)算它們的平均數(shù),試從計(jì)算結(jié)果分析兩岸環(huán)保情況,哪邊保護(hù)更好?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

9.下列函數(shù)中,滿足“f(x+y)=f(x)f(y)”的單調(diào)遞增函數(shù)是( 。
A.f(x)=x3B.f(x)=x${\;}^{\frac{1}{2}}$C.f(x)=3xD.f(x)=($\frac{1}{2}$)x

查看答案和解析>>

同步練習(xí)冊(cè)答案