2.已知函數(shù)f(x)=log3$\frac{x}{4-x}$.
(1)求證f(x)在區(qū)間(0,4)上是單調(diào)遞增函數(shù);
(2)求f(x)在[2,3)上的值域;
(3)若關(guān)于x的方程f(x)=log2t在x∈[2,3)上有解,求實(shí)數(shù)t的范圍.

分析 (1)先判斷內(nèi)外函數(shù)的單調(diào)性,進(jìn)而根據(jù)復(fù)合函數(shù)“同增異減”的原則,可得f(x)在區(qū)間(0,4)上是單調(diào)遞增函數(shù);
(2)由(1)得f(x)在[2,3)上為增函數(shù),求出f(2),f(3)的值,可得f(x)在[2,3)上的值域;
(3)若關(guān)于x的方程f(x)=log2t在x∈[2,3)上有解,則log2t∈[0,1),進(jìn)而可得實(shí)數(shù)t的范圍.

解答 證明:(1)令t=$\frac{x}{4-x}$,則t′=$\frac{4}{(4-{x)}^{2}}$>0在區(qū)間(0,4)上恒成立,
故t=$\frac{x}{4-x}$在區(qū)間(0,4)上為增函數(shù),
故f(x)=log3$\frac{x}{4-x}$在區(qū)間(0,4)上為增函數(shù);
解:(2)由(1)得f(x)在[2,3)上為增函數(shù),
又由f(2)=log31=0,f(3)=log33=1,
故f(x)在[2,3)上的值域?yàn)閇0,1);
(3)若關(guān)于x的方程f(x)=log2t在x∈[2,3)上有解,
則log2t∈[0,1),
解得:t∈[1,2).

點(diǎn)評(píng) 本題考查的知識(shí)點(diǎn)是復(fù)合函數(shù)的單調(diào)性,函數(shù)的值域,對(duì)數(shù)方程的解法,難度中檔.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.已知直三棱柱ABC-A1B1C1中,AB⊥AC,AB=3,AC=4,B1C⊥AC1
(1)求AA1的長(zhǎng).
(2)在線段BB1存在點(diǎn)P,使得二面角P-A1C-A大小的余弦值為$\frac{\sqrt{3}}{3}$,求$\frac{BP}{B{B}_{1}}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.在直角坐標(biāo)系xoy中,曲線C1的參數(shù)方程為$\left\{\begin{array}{l}{x=2cosθ}\\{y=\sqrt{3}sinθ}\end{array}\right.$(θ為參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),x軸的正半軸為極軸建立極坐標(biāo)系,曲線C2的極坐標(biāo)方程是$\sqrt{2}$ρsin(θ-$\frac{π}{4}$)=1
(Ⅰ)求曲線C1的普通方程和曲線C2的直角坐標(biāo)方程;
(Ⅱ)曲線C1和曲線C2相交于點(diǎn)M,N,求通過(guò)M,N兩點(diǎn)的圓中面積最小的圓的標(biāo)準(zhǔn)方程.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.在平面直角坐標(biāo)系xOy中,以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,已知M為曲線C1:ρ=4sinθ上任意一點(diǎn),$\overrightarrow{OP}$=2$\overrightarrow{OM}$,點(diǎn)P的軌跡記為C2
(1)求曲線C2的極坐標(biāo)方程;
(2)直線θ=$\frac{π}{3}$與C1交于點(diǎn)A,直線θ=$\frac{2π}{3}$與C2交于點(diǎn)B,點(diǎn)A、B均異于O,求|AB|.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

17.已知曲線C1:ρ=3$\sqrt{2}$和曲線C2:ρcos(θ+$\frac{π}{4}$)=$\sqrt{2}$,則C1上到C2的距離等于$\sqrt{2}$的點(diǎn)的個(gè)數(shù)有幾個(gè)?

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知f(x)=log2$\frac{x+1}{x-1}$+log2(x-1)+log2(p-x)
(1)求f(x)的定義域;
(2)若函數(shù)f(x)的值域?yàn)椋?∞,log2$\frac{(p+1)^{2}}{4}$],求實(shí)數(shù)p的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.方程($\frac{1}{2}$)x=|lgx|兩根為x1,x2,且x1•x2滿足關(guān)系式為( 。
A.x1x2>1B.0<x1x2<1C.x1x2=1D.x1x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.已知正方體ABCD-A'B'C'D'的棱長(zhǎng)為1,下列說(shuō)法:
①對(duì)角線AC'被平面A'BD和平面B'CD'三等分;
②以正方體的頂點(diǎn)為頂點(diǎn)的四面體的體積都是$\frac{1}{6}$;
③正方體的內(nèi)切球,與各條棱相切的球,外接球的表面積之比為1:2:3;
④正方體與以A為球心,1為半徑的球的公共部分的體積為$\frac{π}{3}$;
則正確的是①③.(寫(xiě)出所有正確的序號(hào))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.求經(jīng)過(guò)點(diǎn)M(2,-4),且與圓(x-1)2+(y+2)2=1相切的切線方程.

查看答案和解析>>

同步練習(xí)冊(cè)答案