6.已知角α的終邊上一點的坐標(biāo)為(sin25°,cos25°),則角α的最小正值為(  )
A.25°B.45°C.65°D.115°

分析 利用任意角的三角函數(shù)的定義,誘導(dǎo)公式,求得tanα的值,可得角α的最小正值.

解答 解:∵角α的終邊上一點的坐標(biāo)為(sin25°,cos25°),∴α為第一象限角,
且 x=sin25°,y=cos25°,r=$\sqrt{{x}^{2}{+y}^{2}}$=$\sqrt{{sin}^{2}25°{+cos}^{2}25°}$=1,
∴tanα=$\frac{cos25°}{sin25°}$=$\frac{sin65°}{cos65°}$=tan65°,則角α的最小正值為65°,
故選:C.

點評 本題主要考查任意角的三角函數(shù)的定義,誘導(dǎo)公式,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.如圖,已知拋物線C:x2=2py(p>0),圓Q:x2+(y-3)2=8,過拋物線C的焦點F且與x軸平行的直線與C交于P1,P2兩點,且|P1P2|=4.
(1)證明:拋物線C與圓Q相切;
(2)直線l過F且與拋物線C和圓Q依次交于M,A,B,N,且直線l的斜率k∈(0,1),求$\frac{|AB|}{|MN|}$的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.已知f(x)在R上是奇函數(shù),且滿足f(x+3)=-f(x),當(dāng)x∈[0,2]時,f(x)=2x2,則f(-2017)=( 。
A.8B.-8C.2D.-2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.已知Sn是等差數(shù)列{an}的前n項和,a1+a2=6,a3+a4=14,若a1,ak,Sk+2成等比數(shù)列,則正整數(shù)k=(  )
A.3B.4C.5D.6

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.函數(shù)$y=\frac{{{x^2}+7x+10}}{x+1}(x>-1)$的值域為( 。
A.RB.(-∞,-9]∪[9,+∞)C.[9,+∞)D.[10,+∞)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.如圖,梯形ABCD中,AB=AD=2CD=2,AB||CD,∠DAB=$\frac{π}{3}$,
設(shè)$\overrightarrow{AM}$=λ$\overrightarrow{AD}$,$\overrightarrow{AN}$=μ$\overrightarrow{AB}$(λ>0,μ>0),$\overrightarrow{AG}$=$\frac{1}{2}$($\overrightarrow{AM}$+$\overrightarrow{AN}$).
(1)當(dāng)λ=$\frac{1}{2}$,μ=$\frac{1}{4}$時,點A,G,C是否共線,請說明理由;
(2)若△AMN的面積為$\frac{\sqrt{3}}{4}$,求|$\overrightarrow{AG}$|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.直線y=x+a與拋物線y2=5ax(a>0)相交于A,B兩點,C(0,2a),給出下列4個命題:
p1:△ABC的重心在定直線7x-3y=0上,p2:|AB|$\sqrt{3-a}$的最大值為2$\sqrt{10}$;
p3:△ABC的重心在定直線 3x-7y=0上;p4:|AB|$\sqrt{3-a}$的最大值為2$\sqrt{5}$.
其中的真命題為( 。
A.p1,p2B.p1,p4C.p2,p3D.p3,p4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

15.已知向量$\overrightarrow{a}$=(cos$\frac{x}{2}$,2sin$\frac{x}{2}$-cos$\frac{x}{2}$),$\overrightarrow$=(-1,1),f(x)=$\overrightarrow{a}•\overrightarrow$
(I )求函數(shù)f(x)的單調(diào)遞增區(qū)間;
(II)若f(2α)=$\frac{2\sqrt{2}}{3}$,求$\frac{cos2α(1-tanα)}{1+tanα}$的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.一直升飛機的航線和山頂在同一鉛垂平面內(nèi),已知飛機的高度為海拔20000m,速度為170($\sqrt{3}$+1)km/h,飛行員在A處看到山頂?shù)母┙菫?0°,經(jīng)過360秒后到B處又看到山頂?shù)母┙菫?35°,求山頂?shù)暮0胃叨龋?/div>

查看答案和解析>>

同步練習(xí)冊答案