【題目】已知函數(shù)在上的最大值為.
(1)求a的值;
(2)求在區(qū)間上的零點個數(shù).
【答案】(1)(2)在上有2個零點
【解析】
(1)對函數(shù)求導(dǎo)得,對參數(shù)分兩種情況進行討論,得到函數(shù)的單調(diào)性后,再利用函數(shù)的最大值,求得的值;
(2)利用隱零點法,得到在上遞增,在上遞減,計算的正負,再利用零點存在定理證明函數(shù)在存在兩個零點.
(1)由已知得.
當(dāng)時,,所以.
若,則,在上遞減,在上的最大值為,不合題意.
若,則,在上遞增,在上的最大值為.
令,得.
(2)由(1)可知,.
設(shè),則.
當(dāng)時,恒成立,所以在上遞減.
又因為,,所以在上存在唯一的滿足,且當(dāng)時,,當(dāng)時,.
注意到在上與的符號相同,所以在上遞增,在上遞減.
又因為,,,,
所以在和上各有一個零點,即在上有2個零點.
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為了調(diào)查“雙11”消費活動情況,某校統(tǒng)計小組分別走訪了、兩個小區(qū)各20戶家庭,他們當(dāng)日的消費額按,,,,,,分組,分別用頻率分布直方圖與莖葉圖統(tǒng)計如下(單位:元):
(1)分別計算兩個小區(qū)這20戶家庭當(dāng)日消費額在的頻率,并補全頻率分布直方圖;
(2)分別從兩個小區(qū)隨機選取1戶家庭,求這兩戶家庭當(dāng)日消費額在的戶數(shù)為1時的概率(頻率當(dāng)作概率使用);
(3)運用所學(xué)統(tǒng)計知識分析比較兩個小區(qū)的當(dāng)日網(wǎng)購消費水平.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】直線與拋物線相交于,兩點,且,若,到軸距離的乘積為.
(1)求的方程;
(2)設(shè)點為拋物線的焦點,當(dāng)面積最小時,求直線的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】給出以下幾個結(jié)論:
①命題,,則,
②命題“若,則”的逆否命題為:“若,則”
③“命題為真”是“命題為真”的充分不必要條件
④若,則的最小值為4
其中正確結(jié)論的個數(shù)是( )
A.1B.2C.3D.4
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)討論的單調(diào)性;
(2)若在定義域內(nèi)是增函數(shù),且存在不相等的正實數(shù),使得,證明:.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的左焦點為,是橢圓上關(guān)于原點對稱的兩個動點,當(dāng)點的坐標為時,的周長恰為.
(1)求橢圓的方程;
(2)過點作直線交橢圓于兩點,且 ,求面積的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】近幾年一種新奇水果深受廣大消費者的喜愛,一位農(nóng)戶發(fā)揮聰明才智,把這種露天種植的新奇水果搬到了大棚里,收到了很好的經(jīng)濟效益.根據(jù)資料顯示,產(chǎn)出的新奇水果的箱數(shù)x(單位:十箱)與成本y(單位:千元)的關(guān)系如下:
x | 1 | 3 | 4 | 6 | 7 |
y | 5 | 6.5 | 7 | 7.5 | 8 |
y與x可用回歸方程 ( 其中,為常數(shù))進行模擬.
(Ⅰ)若該農(nóng)戶產(chǎn)出的該新奇水果的價格為150元/箱,試預(yù)測該新奇水果100箱的利潤是多少元.|.
(Ⅱ)據(jù)統(tǒng)計,10月份的連續(xù)16天中該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的頻率分布直方圖如圖所示.
(i)若從箱數(shù)在內(nèi)的天數(shù)中隨機抽取2天,估計恰有1天的水果箱數(shù)在內(nèi)的概率;
(ⅱ)求這16天該農(nóng)戶每天為甲地配送的該新奇水果的箱數(shù)的平均值.(每組用該組區(qū)間的中點值作代表)
參考數(shù)據(jù)與公式:設(shè),則
0.54 | 6.8 | 1.53 | 0.45 |
線性回歸直線中,,.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在中,,,分別為內(nèi)角,,的對邊,且滿.
(1)求的大;
(2)再在①,②,③這三個條件中,選出兩個使唯一確定的條件補充在下面的問題中,并解答問題.若________,________,求的面積.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】在直角坐標系xOy中,曲線C的參數(shù)方程為(m為參數(shù)),以坐標原點O為極點,x軸的正半軸為極軸建立極坐標系,直線的極坐標方程為
(1)求曲線C和直線的直角坐標系方程;
(2)已知直線與曲線C相交于A,B兩點,求的值.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com