分析 根據(jù)函數(shù)f(x)列出使解析式有意義的不等式組$\left\{\begin{array}{l}{2sinx+1>0}\\{2cosx-1≥0}\end{array}\right.$,求出解集即可.
解答 解:函數(shù)f(x)=lg(2sinx+1)+$\sqrt{2cosx-1}$,
∴$\left\{\begin{array}{l}{2sinx+1>0}\\{2cosx-1≥0}\end{array}\right.$,
即$\left\{\begin{array}{l}{sinx>-\frac{1}{2}}\\{cosx≥\frac{1}{2}}\end{array}\right.$,
解得2kπ-$\frac{π}{6}$<x≤2kπ+$\frac{π}{3}$,k∈Z;
∴函數(shù)f(x)的定義域是(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$],k∈Z.
故答案為:(2kπ-$\frac{π}{6}$,2kπ+$\frac{π}{3}$],k∈Z.
點(diǎn)評 本題考查了根據(jù)函數(shù)的解析式求定義域的應(yīng)用問題,是基礎(chǔ)題.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | f(x)是偶函數(shù) | B. | f(x)是奇函數(shù) | ||
C. | |f(x-1)|的圖象關(guān)于直線x=1對稱 | D. | |f(x)+1|的圖象關(guān)于點(diǎn)(0,1)對稱 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1個(gè) | B. | 2個(gè) | C. | 3個(gè) | D. | 4個(gè) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | B. | C. | D. |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\sqrt{2}$ | C. | $\sqrt{3}$ | D. | 2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com