【題目】已知數(shù)列的前項(xiàng)和為,且,.
(1)若數(shù)列是等差數(shù)列,且,求實(shí)數(shù)的值;
(2)若數(shù)列滿(mǎn)足,且,求證:數(shù)列是等差數(shù)列;
(3)設(shè)數(shù)列是等比數(shù)列,試探究當(dāng)正實(shí)數(shù)滿(mǎn)足什么條件時(shí),數(shù)列具有如下性質(zhì):對(duì)于任意的,都存在使得,寫(xiě)出你的探求過(guò)程,并求出滿(mǎn)足條件的正實(shí)數(shù)的集合.
【答案】(1);(2)證明見(jiàn)解析;(3)
【解析】
(1)首先根據(jù),,求出,再計(jì)算即可.
(2)首先由得到,由且,得到數(shù)列的通項(xiàng)公式,即可證明數(shù)列是等差數(shù)列.
(3)有題意得:,然后對(duì)分類(lèi)討論,可知當(dāng),,時(shí),數(shù)列不具有性質(zhì).當(dāng)時(shí),對(duì)任意,,都有,即當(dāng)時(shí),數(shù)列具有性質(zhì).
(1)設(shè)等差數(shù)列的公差為,由,,得,
解得,則,
所以.
(2)因?yàn)?/span>,
所以,
解得,
因?yàn)?/span>,,,
當(dāng)為奇數(shù)時(shí),.
當(dāng)為偶數(shù)時(shí),.
所以對(duì)任意,都有.
當(dāng)時(shí),,即數(shù)列是等差數(shù)列.
(3)解:由題意,是等比數(shù)列,.
①當(dāng)時(shí),,
所以對(duì)任意,都有,
因此數(shù)列不具有性質(zhì).
②當(dāng)時(shí),,.
所以對(duì)任意,都有,
因此數(shù)列不具有性質(zhì).
③當(dāng)時(shí),.
,
.
取(表示不小于的最小整數(shù)),
則,.
所以對(duì)于任意,.
即對(duì)于任意,都不在區(qū)間內(nèi),
所以數(shù)列不具有性質(zhì).
④當(dāng)時(shí),,且,
即對(duì)任意,,都有,
所以當(dāng)時(shí),數(shù)列具有性質(zhì).
綜上,使得數(shù)列具有性質(zhì)的正實(shí)數(shù)的集合為.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)的最大值為,當(dāng)的定義域?yàn)?/span>時(shí),的值域?yàn)?/span>,則正整數(shù)的最小值為( )
A.3B.4C.5D.6
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】設(shè)橢圓的左焦點(diǎn)為,下頂點(diǎn)為,上頂點(diǎn)為,是等邊三角形.
(Ⅰ)求橢圓的離心率;
(Ⅱ)設(shè)直線(xiàn),過(guò)點(diǎn)且斜率為的直線(xiàn)與橢圓交于點(diǎn) 異于點(diǎn),線(xiàn)段的垂直平分線(xiàn)與直線(xiàn)交于點(diǎn),與直線(xiàn)交于點(diǎn),若.
(ⅰ)求的值;
(ⅱ)已知點(diǎn),點(diǎn)在橢圓上,若四邊形為平行四邊形,求橢圓的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù)f(x)=lnx(b∈R),g(x).
(1)討論函數(shù)f(x)的單調(diào)性
(2)是否存在實(shí)數(shù)b使得函數(shù)y=f(x)在x∈(,+∞)上的圖象存在函數(shù)y=g(x)的圖象上方的點(diǎn)?若存在,請(qǐng)求出最小整數(shù)b的值,若不存在,請(qǐng)說(shuō)明理由.(參考數(shù)據(jù)ln2=0.6931,1.6487)
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】(本小題滿(mǎn)分13分)
某產(chǎn)品按行業(yè)生產(chǎn)標(biāo)準(zhǔn)分成8個(gè)等級(jí),等級(jí)系數(shù)X依次為1,2,……,8,其中X≥5為標(biāo)準(zhǔn)A,X≥3為標(biāo)準(zhǔn)B,已知甲廠執(zhí)行標(biāo)準(zhǔn)A生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為6元/件;乙廠執(zhí)行標(biāo)準(zhǔn)B生產(chǎn)該產(chǎn)品,產(chǎn)品的零售價(jià)為4元/件,假定甲、乙兩廠得產(chǎn)品都符合相應(yīng)的執(zhí)行標(biāo)準(zhǔn)
(I)已知甲廠產(chǎn)品的等級(jí)系數(shù)X1的概率分布列如下所示:
且X1的數(shù)字期望EX1=6,求a,b的值;
(II)為分析乙廠產(chǎn)品的等級(jí)系數(shù)X2,從該廠生產(chǎn)的產(chǎn)品中隨機(jī)抽取30件,相應(yīng)的等級(jí)系數(shù)組成一個(gè)樣本,數(shù)據(jù)如下:
3 5 3 3 8 5 5 6 3 4
6 3 4 7 5 3 4 8 5 3
8 3 4 3 4 4 7 5 6 7
用這個(gè)樣本的頻率分布估計(jì)總體分布,將頻率視為概率,求等級(jí)系數(shù)X2的數(shù)學(xué)期望.
在(I)、(II)的條件下,若以“性?xún)r(jià)比”為判斷標(biāo)準(zhǔn),則哪個(gè)工廠的產(chǎn)品更具可購(gòu)買(mǎi)性?說(shuō)明理由.
注:(1)產(chǎn)品的“性?xún)r(jià)比”=;
(2)“性?xún)r(jià)比”大的產(chǎn)品更具可購(gòu)買(mǎi)性.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系中,以為極點(diǎn),軸的正半軸為極軸,建立極坐標(biāo)系,曲線(xiàn)的極坐標(biāo)方程為;直線(xiàn)的參數(shù)方程為(為參數(shù)),直線(xiàn)與曲線(xiàn)分別交于,兩點(diǎn).
(1)寫(xiě)出曲線(xiàn)的直角坐標(biāo)方程和直線(xiàn)的普通方程;
(2)若點(diǎn)的極坐標(biāo)為,,求的值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知橢圓的左、右焦點(diǎn)分別為,離心率為,且在橢圓上運(yùn)動(dòng),當(dāng)點(diǎn)恰好在直線(xiàn)l:上時(shí),的面積為.
(1)求橢圓的方程;
(2)作與平行的直線(xiàn),與橢圓交于兩點(diǎn),且線(xiàn)段的中點(diǎn)為,若的斜率分別為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知函數(shù),證明:
(1)在區(qū)間存在唯一極大值點(diǎn);
(2)有且僅有2個(gè)零點(diǎn).
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:
【題目】某人準(zhǔn)備投資1200萬(wàn)元辦一所中學(xué),為了考慮社會(huì)效益和經(jīng)濟(jì)效益,對(duì)該地區(qū)教育市場(chǎng)進(jìn)行調(diào)查,得出一組數(shù)據(jù),列表如下(以班級(jí)為單位).
市場(chǎng)調(diào)查表:
班級(jí)學(xué)生數(shù) | 配備教師數(shù) | 硬件建設(shè)費(fèi)(萬(wàn)元) | 教師年薪(萬(wàn)元) | |
初中 | 50 | 2.0 | 28 | 1.2 |
高中 | 40 | 2.5 | 58 | 1.6 |
根據(jù)物價(jià)部門(mén)的有關(guān)規(guī)定:初中是義務(wù)教育階段,收費(fèi)標(biāo)準(zhǔn)適當(dāng)控制,預(yù)計(jì)除書(shū)本費(fèi)、辦公費(fèi)外,初中每人每年可收取600元.高中每人每年可收取1500元.因生源和環(huán)境等條件限制,辦學(xué)規(guī)模以20至30個(gè)班為宜(含20個(gè)班與30個(gè)),教師實(shí)行聘任制.初、高中教育周期均為三年,設(shè)初中編制為個(gè)班,高中編制為個(gè)班,請(qǐng)你合理地安排招生計(jì)劃,使年利潤(rùn)最大.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com