1.如圖,在正方體ABC的-A1B1C1D1中,點(diǎn)P是線段A1C1上的動點(diǎn),則三棱錐P-BCD的俯視圖與正視圖面積之比的最大值為( 。
A.1B.$\sqrt{2}$C.$\sqrt{3}$D.2

分析 分析三棱錐P-BCD的正視圖與側(cè)視圖的形狀,并求出面積,可得答案.

解答 解:設(shè)棱長為1,則三棱錐P-BCD的正視圖是底面邊長為1,高為1的三角形,面積為:$\frac{1}{2}$;
三棱錐P-BCD的俯視圖取最大面積時(shí),P在A1處,是個(gè)正方形,俯視圖面積為:1;
故三棱錐P-BCD的俯視圖與正視圖面積之比的最大值為2,
故選:D.

點(diǎn)評 本題考查的知識點(diǎn)是簡單空間圖形的三視圖,根據(jù)已知分析出三棱錐P-BCD的正視圖與側(cè)視圖的形狀,是解答的關(guān)鍵.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

7.設(shè)向量$\overrightarrow{a}$=(1,2m),$\overrightarrow$=(m+1,1),$\overrightarrow{c}$=(m,3),若($\overrightarrow{a}$+$\overrightarrow{c}$)⊥$\overrightarrow$,則|$\overrightarrow{a}$|=$\sqrt{17}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.關(guān)于不同的直線m,n與不同的平面α,β,有下列四個(gè)命題:
①m⊥α,n⊥β且α⊥β,則m⊥n;②m∥α,n∥β且α∥β,則m∥n;
③m⊥α,n∥β且α∥β,則m⊥n;   ④m∥α,n⊥β且α⊥β,則m∥n.
其中正確的命題的序號是( 。
A.①②B.②③C.①③D.②④

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若$P(ξ=K)=\frac{1}{2^K}$,則$\frac{n!}{{3!({n-3})!}}$的值為( 。
A.1B.20C.35D.7

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.設(shè)a,b,c>0,則$a+\frac{1},b+\frac{1}{c},c+\frac{1}{a}$( 。
A.都不大于2B.都不小于2
C.至少有一個(gè)不大于2D.至少有一個(gè)不小于2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)不等式x2-4mx+4m2+m+$\frac{1}{m-1}$>0的解集為R,則實(shí)數(shù)m的取值范圍是(1,+∞).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.在△ABC中,AH⊥BC于H,點(diǎn)D滿足$\overrightarrow{BD}$=2$\overrightarrow{DC}$,若|$\overrightarrow{AH}$|=$\sqrt{2}$,則$\overrightarrow{AH}$•$\overrightarrow{AD}$=(  )
A.$\sqrt{2}$B.2C.2$\sqrt{2}$D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合M={0,2,zi},i為虛數(shù)單位,N={1,3},M∩N={1},則復(fù)數(shù)z=( 。
A.-iB.iC.-2iD.2i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.《張丘建算經(jīng)》是我國古代內(nèi)容極為豐富的數(shù)學(xué)名著,書中有如下問題:“今有女不善織,日減功遲,初日織五尺,末日織一尺,今共織九十尺,問織幾日?”,已知“日減功遲”的具體含義是每天比前一天少織同樣多的布,則此問題的答案是( 。
A.10日B.20日C.30日D.40日

查看答案和解析>>

同步練習(xí)冊答案