分析 作出不等式對應(yīng)的平面區(qū)域,利用線性規(guī)劃的知識,通過平移即可求z的最大值.
解答 解:作出不等式對應(yīng)的平面區(qū)域,
由z=x+2y,得y=-x+$\frac{z}{2}$,
平移直線y=-$\frac{1}{2}$x+$\frac{z}{2}$,由圖象可知當(dāng)直線y=-$\frac{1}{2}$x+$\frac{z}{2}$經(jīng)過點A時,直線y=-$\frac{1}{2}$x+$\frac{z}{2}$的截距最大,此時z最大.
由$\left\{\begin{array}{l}{x=1}\\{x-y+1=0}\end{array}\right.$,得$\left\{\begin{array}{l}{x=1}\\{y=2}\end{array}\right.$,
即A(1,2),
此時z的最大值為z=1+2×2=5,
故答案為:5.
點評 本題主要考查線性規(guī)劃的應(yīng)用,利用數(shù)形結(jié)合是解決線性規(guī)劃題目的常用方法.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $[-\frac{{2\sqrt{6}}}{3},+∞)$ | B. | $[\frac{{2\sqrt{6}}}{3},+∞)$ | C. | $[-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3}]$ | D. | $(-\frac{{2\sqrt{6}}}{3},\frac{{2\sqrt{6}}}{3})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|≠3} | B. | {x|≤-3或x>3} | C. | {x|-3<x≤3} | D. | {x|-3≤x<3} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 充分而不必要條件 | B. | 必要而不充分條件 | ||
C. | 充分必要條件 | D. | 既不充分也不必要條件 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com