1.在△ABC中,角A,B,C的對(duì)邊分別是a,b,c,$\frac{asinA+bsinB-csinC}{asinB}$=$\frac{2\sqrt{3}}{3}$sinC,c=2$\sqrt{3}$,則a+b的最大值為$4\sqrt{3}$.

分析 $\frac{asinA+bsinB-csinC}{asinB}$=$\frac{2\sqrt{3}}{3}$sinC,利用正弦定理可得:$\frac{{a}^{2}+^{2}-{c}^{2}}{ab}$=$\frac{2\sqrt{3}}{3}$sinC=2cosC,可得tanC=$\sqrt{3}$.C∈(0,π),解得C.再利用正弦定理可得:a=4sinA,b=4sinB.利用和差公式、三角函數(shù)的值域即可得出.

解答 解:∵$\frac{asinA+bsinB-csinC}{asinB}$=$\frac{2\sqrt{3}}{3}$sinC,
∴$\frac{{a}^{2}+^{2}-{c}^{2}}{ab}$=$\frac{2\sqrt{3}}{3}$sinC=2cosC,可得tanC=$\sqrt{3}$.
C∈(0,π),解得C=$\frac{π}{3}$.
∴$\frac{a}{sinA}$=$\frac{sinB}$=$\frac{2\sqrt{3}}{sin\frac{π}{3}}$=4.
∴a=4sinA,b=4sinB.
則a+b=4sinA+4sin$(\frac{2π}{3}-A)$=$4\sqrt{3}$$sin(A+\frac{π}{6})$,
∵A∈$(0,\frac{2π}{3})$,∴(A+$\frac{π}{6}$)∈$(\frac{π}{6},\frac{5π}{6})$,∴sin$(A+\frac{π}{6})$∈$(\frac{1}{2},1]$.
∴a+b≤4$\sqrt{3}$,當(dāng)A=$\frac{π}{3}$時(shí)取等號(hào).
故答案為:4$\sqrt{3}$.

點(diǎn)評(píng) 本題考查了正弦定理余弦定理、和差公式、三角函數(shù)的單調(diào)性,考查了推理能力與計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

11.若函數(shù)f(x)=(x2+mx)ex的單調(diào)減區(qū)間是$[-\frac{3}{2},1]$,則實(shí)數(shù)m的值為$-\frac{3}{2}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.已知三點(diǎn)坐標(biāo)A(0,-4),B(4,0),C(-6,2),點(diǎn)D,E,F(xiàn)分別為線段BC,CA,AB的中點(diǎn),則直線EF的方程為( 。
A.x+5y+8=0B.x-y+2=0C.x+y=0D.x+y+4=0

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

9.一箱內(nèi)有十張標(biāo)有0到9的卡片,從中任選一張,則取到卡片上的數(shù)字不小于6的概率是$\frac{2}{5}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

16.某學(xué)校為了了解該校學(xué)生對(duì)于某項(xiàng)運(yùn)動(dòng)的愛(ài)好是否與性別有關(guān),通過(guò)隨機(jī)抽查110名學(xué)生,得到如下2×2的列聯(lián)表:
喜歡該項(xiàng)運(yùn)動(dòng)不喜歡該項(xiàng)運(yùn)動(dòng)總計(jì)
402060
203050
總計(jì)6050110
由公式K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,算得K2≈7.61
附表:
p(K2≥k00.0250.010.005
k05.0246.6357.879
參照附表,以下結(jié)論正確是( 。
A.有99.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
B.有99.5%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”
C.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別有關(guān)”
D.有99%以上的把握認(rèn)為“愛(ài)好該項(xiàng)運(yùn)動(dòng)與性別無(wú)關(guān)”

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

6.某機(jī)械零件加工由兩道工序組成,第一道工序的廢品率為a,第二道工序的廢品率為b,假定這兩道工序處廢品是彼此無(wú)關(guān)的,那么產(chǎn)品的合格率是(1-a)(1-b).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知$|{\overrightarrow a}|=3$,$|{\overrightarrow b}|=8$,$\overrightarrow a•\overrightarrow b=-12$,則$\overrightarrow a與\overrightarrow b$的夾角為( 。
A.$\frac{π}{3}$B.$\frac{π}{4}$C.$\frac{3π}{4}$D.$\frac{2π}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

10.已知函數(shù)f(x)=-x2+8x,g(x)=6ln x+m.
(1)若函數(shù)y=g(x)的圖象與直線y=6x相切,求實(shí)數(shù)m的值;
(2)若函數(shù)y=f(x)的圖象與y=g(x)的圖象有且只有三個(gè)不同的交點(diǎn),求出實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.已知命題p:?x∈(2,+∞),2x>x2;命題q:函數(shù)f(x)=sin2x+$\sqrt{3}$cos2x的一條對(duì)稱(chēng)軸是x=$\frac{7π}{12}$,則下列命題中為真命題的是( 。
A.p∧qB.¬p∧qC.p∧¬qD.¬p∧¬q

查看答案和解析>>

同步練習(xí)冊(cè)答案