2.函數(shù)f(x)=Asin(ωx+φ)(ω>0,0<φ<π)的一段圖象如圖所示,則f(x)的解析式為( 。
A.$y=2sin(4x+\frac{2π}{3})$B.$y=4sin(2x+\frac{π}{3})$C.$y=2\sqrt{3}sin(4x+\frac{π}{6})$D.$y=-2sin(4x+\frac{2π}{3})$

分析 利用函數(shù)的周期求出ω,利用函數(shù)經(jīng)過(guò)的特殊點(diǎn)求出A,利用函數(shù)的對(duì)稱性求出φ,即可判斷函數(shù)的解析式.

解答 解:由函數(shù)的圖象可知:函數(shù)的周期為:2($\frac{5π}{24}+\frac{π}{24}$)=$\frac{π}{2}$,
可得:ω$\frac{2π}{\frac{π}{2}}$=4.
x=-$\frac{π}{24}$時(shí),函數(shù)取得最大值,x=$\frac{5π}{24}$時(shí),函數(shù)取得最小值,
可得:φ-$\frac{π}{6}$=$\frac{π}{2}$,φ+$\frac{5π}{6}$=$\frac{3π}{2}$,解得φ=$\frac{2π}{3}$,
x=0時(shí),函數(shù)y=$\sqrt{3}$,可得A=2.
所以函數(shù)的解析式為:$y=2sin(4x+\frac{2π}{3})$.
故選:A.

點(diǎn)評(píng) 本題考查三角函數(shù)的解析式的求法,考查計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

12.對(duì)兩個(gè)變量進(jìn)行回歸分析,則下列說(shuō)法中不正確的是(  )
A.有樣本數(shù)據(jù)得到的回歸方程$\stackrel{∧}{y}$=$\stackrel{∧}$x+$\stackrel{∧}{a}$必經(jīng)過(guò)樣本中心($\overline{x}$,$\overline{y}$)
B.殘差平方和越大,模型的擬合效果越好
C.用R2來(lái)刻畫回歸效果,R2越大,說(shuō)明模型的擬合效果越好
D.若散點(diǎn)圖中的樣本呈條狀分布,則變量y和x之間具有線性相關(guān)關(guān)系

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

13.已知集合A={-1,0,1,2},B={x|x(x-2)<0},則A∩B等于( 。
A.{0}B.{-1}C.{1}D.{0,-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

10.已知函數(shù)$f(x)={cos^2}x+sinx,x∈[\frac{π}{3},\frac{5π}{6}]$,則f(x)的最大值與最小值的和為(  )
A.$\frac{1}{4}$B.$\frac{9}{4}$C.$\frac{{2\sqrt{3}+5}}{4}$D.$\frac{{2\sqrt{3}+6}}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知函數(shù)g(x)=x2-2ax,f(x)=$\frac{1}{3}{x^3}$-ln(x+1),若存在x1∈[0,1],存在x2∈[1,2]使得f′(x1)≥g(x2)成立,則實(shí)數(shù)a的取值范圍是a≥1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.某公司生產(chǎn)一種產(chǎn)品,固定成本為20 000元,每生產(chǎn)一單位的產(chǎn)品,成本增加100元,若總收入R與年產(chǎn)量x(0≤x≤390)的關(guān)系是$R(x)=-\frac{x^3}{9000}+400x,0≤x≤390$,則當(dāng)總利潤(rùn)最大時(shí),每年生產(chǎn)的產(chǎn)品單位數(shù)是( 。
A.300B.250C.200D.100

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

14.閱讀右邊的程序框圖,運(yùn)行相應(yīng)的程序,則輸出的T值為39.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.$\frac{2}{3}$B.$\frac{4}{3}$C.2D.$\frac{8}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

12.已知函數(shù)f(x)=2x+2-x-4,則f(2)的值為$\frac{1}{4}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案