12.在△ABC中,C=90°,函數(shù)y=sin2A+2sinB的值域?yàn)椋?,2).

分析 根據(jù)C=90°,那么B=90°-A.消去B,利用換元法,通過三角函數(shù)的有界性,轉(zhuǎn)化函數(shù)為二次函數(shù),求出值域即可.

解答 解:由題意,C=90°,那么B=90°-A.
則函數(shù)y=sin2A+2sinB=1-cos2A+2cosA=-(cosA-1)2+2,
∵0°<A<90°,
∴0<cosA<1,
那么y∈(1,2),即函數(shù)y=sin2A+2sinB的值域?yàn)椋?,2).
故答案為:(1,2).

點(diǎn)評(píng) 本題考查三角函數(shù)的有界性,二次函數(shù)的最值,考查轉(zhuǎn)化思想以及計(jì)算能力.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.設(shè)三棱錐PABC的頂點(diǎn)P在平面ABC上的射影是H,給出下列命題:
①若PA⊥BC,PB⊥AC,則H是△ABC的垂心;
②若PA,PB,PC兩兩互相垂直,則H是△ABC的垂心;
③若PA=PB=PC,則H是△ABC的外心.
請(qǐng)把正確命題的序號(hào)填在橫線上:①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.已知函數(shù)f(x)=exsinx,則f′(0)=1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

20.已知i為虛數(shù)單位,復(fù)數(shù)z滿足z(1-i)=1+i,則z的共軛復(fù)數(shù)是(  )
A.1B.-1C.iD.-i

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.下列函數(shù)中,既是偶函數(shù)又在(0,+∞)上單調(diào)遞減的是( 。
A.y=-xB.y=cosxC.y=${x^{\frac{2}{5}}}$D.y=-x2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.調(diào)查某醫(yī)院某段時(shí)間內(nèi)嬰兒出生的時(shí)間與性別的關(guān)系,得到下面的數(shù)據(jù)表:
晚上白天合計(jì)
男嬰243155
女嬰82634
合計(jì)325789
你認(rèn)為嬰兒的性別與出生時(shí)間有關(guān)系的把握為(  )
參考公式及數(shù)據(jù):$\begin{array}{l}{K^2}=\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}\end{array}$
P(k2≥k)0.250.150.1 00.050.025
k1.3232.0722.7063.8415.024
A.80%B.90%C.95%D.99%

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

4.(1)計(jì)算:$\frac{{(1+i)}^{3}}{i}$+$\frac{(\sqrt{3}+i)(\sqrt{3}-i)-{4i}^{2016}}{{(3+4i)}^{2}}$
(2)設(shè)復(fù)數(shù)z和它的共軛復(fù)數(shù)$\overline{z}$滿足4z+2$\overline{z}$=3$\sqrt{3}$+i,求復(fù)數(shù)z.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知定義在(-∞,4]上的函數(shù)f(x)與其導(dǎo)函數(shù)f'(x)滿足(x-1)(x-4)[f'(x)-f(x)]<0,
若$f({|x|+|y|+1})-{e^{\frac{1}{2}|x|-1}}f({\frac{1}{2}|x|+|y|+2})<0$,則點(diǎn)(x,y)所在區(qū)域的面積為( 。
A.12B.6C.18D.9

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=ex-mx,
(1)求函數(shù)f(x)的單調(diào)區(qū)間.
(2)若函數(shù)g(x)=f(x)-lnx+x2存在兩個(gè)零點(diǎn),求m的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案