12.已知 $\frac{π}{2}<α<β<\frac{3π}{4},cos({α-β})=\frac{12}{13},sin({α+β})=-\frac{3}{5}$,則sin2α=( 。
A.$-\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{16}{65}$D.$-\frac{56}{65}$

分析 比較題設(shè)條件與結(jié)論,可知應(yīng)利用角的關(guān)系2α=(α+β)+(α-β)求解.

解答 解:∵sin2α=sin[(α+β)+(α-β)]=sin(α+β)cos(α-β)+cos(α+β)sin(α-β),
又∵$\frac{π}{2}<α<β<\frac{3π}{4},cos({α-β})=\frac{12}{13},sin({α+β})=-\frac{3}{5}$,
∴-$\frac{π}{4}$<α-β<0,π<α+β<$\frac{3π}{2}$,
∴sin(α-β)=-$\frac{5}{13}$,cos(α+β)=-$\frac{4}{5}$,
∴sin2α=(-$\frac{5}{13}$)×$\frac{12}{13}$-$\frac{4}{5}$×(-$\frac{5}{13}$)=-$\frac{16}{65}$.
故選:A.

點(diǎn)評(píng) 本題主要考查了兩角和的正弦函數(shù)公式,同角三角函數(shù)基本關(guān)系式在三角函數(shù)化簡(jiǎn)求值中的應(yīng)用,考查了計(jì)算能力和轉(zhuǎn)化思想,屬于基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.若一個(gè)圓錐的側(cè)面積展開(kāi)圖是面積為2π的半圓面,則該圓錐的軸截面面積為$\sqrt{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若實(shí)數(shù)x,y滿足$\left\{\begin{array}{l}2x-y-2≤0\\ x-2y+2≥0\\ x≥0\\ y≥0\end{array}\right.$,則z=x+y的最大值為(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

20.已知函數(shù)y=f(x)在(0,+∞)上可導(dǎo),且滿足(x-1)[2f(x)+xf′(x)]>0(x≠1)恒成立,f(1)=2,若曲線f(x)在點(diǎn)(1,2)處的切線為y=g(x)且g(a)=2016,則a=-502.5.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

7.已知等比數(shù)列{an}的公比為q,前n項(xiàng)和為Sn,若an>0,q>1,a3+a5=20,a2•a6=20,則S5=(  )
A.30B.31C.62D.63

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

17.已知向量$\overrightarrow a$與$\overrightarrow b$的夾角為120°,且$|\overrightarrow a|=3,|\overrightarrow a-\overrightarrow b|=\sqrt{19}$,則$|\overrightarrow b|$=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若函數(shù)y=$\frac{1}{3}$x3+mx的導(dǎo)函數(shù)有零點(diǎn),則實(shí)數(shù)m的取值范圍是( 。
A.m>0B.m≤0C.m>1D.m≤1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.已知數(shù)列{an}的前n項(xiàng)和Sn=n(n+1),數(shù)列{bn}對(duì)n∈N*,有S1b1+S2b2+…+Snbn=an,求b1+b2+…+b2017=$\frac{2017}{1009}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

2.已知a,b,c為△ABC的三個(gè)角A,B,C所對(duì)的邊,若3bcosC=c(1-3cosB),則$\frac{c}{a}$=( 。
A.2:3B.4:3C.3:1D.3:2

查看答案和解析>>

同步練習(xí)冊(cè)答案