6.已知集合A={x|x≥2,或x≤-1},B={x|log3(2-x)≤1},則A∩(∁RB)=( 。
A.{x|x<-1}B.{x|x≤-1,或x>2}C.{x|x≥2,或x=-1}D.{x|x<-1,或x≥2}

分析 先求出集合B,再求出∁RB,由此利用交集定義能求出A∩(∁RB).

解答 解:∵集合A={x|x≥2,或x≤-1},
B={x|log3(2-x)≤1}={x|-1≤x<2},
RB={x|x<-1或x≥2},
∴A∩(∁RB)={x|x<-1,或x≥2}.
故選:D.

點(diǎn)評(píng) 本題考查交集的求法,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意補(bǔ)集、交集定義的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1,y1),P2(x2,y2)間的“L距離”定義為:||P1P2||=|x1-x2|+|y1-y2|,則平面內(nèi)與x軸上兩個(gè)不同的定點(diǎn)F1,F(xiàn)2的“L距離”之和等于定值(大于||F1F2||)的點(diǎn)的軌跡可以是( 。
A.B.C.D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.拋物線M的頂點(diǎn)是坐標(biāo)原點(diǎn)O,拋物線M的焦點(diǎn)F在x軸正半軸上,拋物線M的準(zhǔn)線與曲線x2+y2-6x+4y-3=0只有一個(gè)公共點(diǎn),設(shè)A是拋物線M上的一點(diǎn),若$\overrightarrow{OA}$•$\overrightarrow{AF}$=-4,則點(diǎn)A的坐標(biāo)是( 。
A.(-1,2)或(-1,-2)B.(1,2)或(1,-2)C.(1,2)D.(1,-2)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

14.從4臺(tái)甲型和5臺(tái)乙型電視機(jī)中任取出3臺(tái),在取出的3臺(tái)中至少有甲型和乙型電視機(jī)各一臺(tái),則不同取法共有( 。
A.140種B.80種C.70種D.35種

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

1.知數(shù)列{an}的前n項(xiàng)和為Sn,且滿足${S_n}=2{a_n}-2({n∈{N^*}})$,數(shù)列{bn}為等差數(shù)列,且滿足b2=a1,b8=a3
(I)求數(shù)列{an},{bn}的通項(xiàng)公式;
(II)令${c_n}=1-{({-1})^{n+1}}{a_n}$,關(guān)于k的不等式${c_k}≥4097({1≤k≤100,k∈{N^*}})$的解集為M,求所有ak+bk(k∈M)的和S.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.某校高三(1)班的一次數(shù)學(xué)測試成績的莖葉圖和頻率分布直方圖都受到不同程度的污損,可見部分如圖.

(1)求分?jǐn)?shù)在[50,60)內(nèi)的頻率、全班人數(shù)及分?jǐn)?shù)在[80,90)內(nèi)的頻數(shù);
(2)若要從分?jǐn)?shù)在[80,100)內(nèi)的試卷中任取兩份分析學(xué)生的失分情況,求在抽取的試卷中,至少有一份試卷的分?jǐn)?shù)在[90,100)內(nèi)的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.已知圓O的半徑為1,A,B,C,D為該圓上四個(gè)點(diǎn),且$\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{AD}$,則△ABC的面積最大值為(  )
A.2B.1C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

15.設(shè)拋物線C:y2=4x的焦點(diǎn)為F,傾斜角為鈍角的直線l過F且與C交于A,B兩點(diǎn),若|AB|=$\frac{16}{3}$,則l的斜率為( 。
A.-1B.-$\frac{\sqrt{3}}{3}$C.-$\frac{\sqrt{2}}{2}$D.-$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別是a,b,c,且$\frac{tanA}{tanB}=\frac{2c-b}$.
(1)將函數(shù)$f(x)=sin({2x+φ})({0<φ<\frac{π}{2}})$的圖象向右平移角A個(gè)單位可得到函數(shù)g(x)=-cos2x的圖象,求φ的值;
(2)若△ABC的外接圓半徑為1,求△ABC面積的最大值.

查看答案和解析>>

同步練習(xí)冊(cè)答案