16.在平面直角坐標(biāo)系中,兩點(diǎn)P1(x1,y1),P2(x2,y2)間的“L距離”定義為:||P1P2||=|x1-x2|+|y1-y2|,則平面內(nèi)與x軸上兩個(gè)不同的定點(diǎn)F1,F(xiàn)2的“L距離”之和等于定值(大于||F1F2||)的點(diǎn)的軌跡可以是(  )
A.B.C.D.

分析 根據(jù)題意,設(shè)出F1,F(xiàn)2的坐標(biāo),再設(shè)動(dòng)點(diǎn)M的坐標(biāo),可得|x+c|+|x-c|+2|y|=m,分類(lèi)討論消去絕對(duì)值,化簡(jiǎn)方程,進(jìn)而結(jié)合選項(xiàng)分析可得答案.

解答 解:設(shè)F1(-c,0),F(xiàn)2(c,0),
再設(shè)動(dòng)點(diǎn)M(x,y),動(dòng)點(diǎn)到定點(diǎn)F1,F(xiàn)2的“L-距離”之和等于m(m>2c>0),
由題意可得:|x+c|+|y|+|x-c|+|y|=m,即|x+c|+|x-c|+2|y|=m.
當(dāng)x<-c,y≥0時(shí),方程化為2x-2y+m=0;
當(dāng)x<-c,y<0時(shí),方程化為2x+2y+m=0;
當(dāng)-c≤x<c,y≥0時(shí),方程化為y=$\frac{m}{2}$-c;
當(dāng)-c≤x<c,y<0時(shí),方程化為y=c-$\frac{m}{2}$;
當(dāng)x≥c,y≥0時(shí),方程化為2x+2y-m=0;
當(dāng)x≥c,y<0時(shí),方程化為2x-2y-m=0.
結(jié)合題目中給出的四個(gè)選項(xiàng)可知,選項(xiàng)A中的圖象符合要求.
故選:A.

點(diǎn)評(píng) 本題考查軌跡方程的求法,涉及分類(lèi)討論求解析式方程,解答的關(guān)鍵是正確分類(lèi)討論,求出每一種情況下的解析式.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知數(shù)列{an}滿(mǎn)足an>0,a1=2,且(n+1)an+12=nan2+an(n∈N*).
(Ⅰ)證明:an>1;
(Ⅱ)證明:$\frac{{a}_{2}^{2}}{4}$+$\frac{{a}_{3}^{2}}{9}$+…+$\frac{{a}_{n}^{2}}{{n}^{2}}$<$\frac{9}{5}$(n≥2).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

7.已知數(shù)列{an}中,a1=$\frac{3}{5}$,且an=2-$\frac{1}{{{a_{n-1}}}}$(n≥2),數(shù)列{bn}滿(mǎn)足bn=$\frac{1}{{{a_n}-1}}$.
(1)求證:數(shù)列{bn}是等差數(shù)列;
(2)求數(shù)列{an}中最大項(xiàng)、最小項(xiàng).

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

4.已知在直角坐標(biāo)系xOy中,直線l的參數(shù)方程為$\left\{{\begin{array}{l}{x=1+tcosα}\\{y=tsinα}\end{array}}\right.({t為參數(shù),0<α<\frac{π}{2}})$,若以O(shè)為極點(diǎn),x軸正半軸為極軸建立極坐標(biāo)系,曲線C的極坐標(biāo)方程為ρcos2θ+4cosθ=ρ(ρ≥0,0≤θ≤2π).
(Ⅰ)當(dāng)$α=\frac{π}{3}$時(shí),求直線l的普通方程;
(Ⅱ)若直線l與曲線C相交A,B兩點(diǎn).求證:$\overline{OA}$•$\overline{OB}$是定值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

11.在△ABC中,a,b,c分別是角A,B,C的對(duì)邊,且$\frac{cosC}{cosB}$=$\frac{3a-c}$,求sinB的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.在△ABC中,點(diǎn)E滿(mǎn)足$\overrightarrow{BE}=3\overrightarrow{EC}$,且$\overrightarrow{AE}=m\overrightarrow{AB}+n\overrightarrow{AC}$,則m-n=( 。
A.$\frac{1}{2}$B.$-\frac{1}{2}$C.$-\frac{1}{3}$D.$\frac{1}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.以直角坐標(biāo)系的原點(diǎn)O為極點(diǎn),x軸的正半軸為極軸,且兩個(gè)坐標(biāo)系取相等的長(zhǎng)度單位,已知直線l的參數(shù)方程為$\left\{\begin{array}{l}{x=tsinφ}\\{y=2+tcosφ}\end{array}\right.$(t為參數(shù),0<φ<π),曲線C的極坐標(biāo)方程為ρcos2θ=8sinθ.
(1)求直線l的普通方程和曲線C的直角坐標(biāo)方程;
(2)設(shè)直線l與曲線C相交于A、B兩點(diǎn),當(dāng)φ變化時(shí),求|AB|的最小值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

5.設(shè)復(fù)數(shù)z=1+i(i是虛數(shù)單位),則z2-2iz的值等于2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

6.已知集合A={x|x≥2,或x≤-1},B={x|log3(2-x)≤1},則A∩(∁RB)=( 。
A.{x|x<-1}B.{x|x≤-1,或x>2}C.{x|x≥2,或x=-1}D.{x|x<-1,或x≥2}

查看答案和解析>>

同步練習(xí)冊(cè)答案