13.由1,$\frac{1}{3}$,$\frac{9}{35}$,$\frac{17}{63}$,$\frac{33}{99}$,…,歸納猜想第n項為$\frac{{2}^{n}+1}{(2n-1)(2n+1)}$.

分析 由題意,第n項分子為2n+1,分母為(2n-1)(2n+1),即可求出第n項.

解答 解:由題意,第n項分子為2n+1,分母為(2n-1)(2n+1),
∴第n項為$\frac{{2}^{n}+1}{(2n-1)(2n+1)}$.
故答案為:$\frac{{2}^{n}+1}{(2n-1)(2n+1)}$.

點評 本題考查歸納推理,考查學生的計算能力,比較基礎.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=lnx-(1+a)x-1,g(x)=-$\frac{lnx}{x}$-a(x+1),其中a∈R
(1)若函數(shù)f(x)在其定義域上不是單調(diào)函數(shù),求實數(shù)a的取值范圍
(2)如果函數(shù)p(x),q(x)在公共定義域D上滿足p(x)<q(x),那么就稱p(x)為q(x)的“底下函數(shù)”.證明:當a<1時,f(x)為g(x)的“底下函數(shù)”

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

4.i+i2+i3+i4+…+i2016=0.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

1.已知橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的離心率為$\frac{\sqrt{2}}{2}$,短軸的一個端點為M(0,1),過橢圓左頂點A的直線l與橢圓的另一交點為B.
(1)求橢圓的方程;
(2)若l與直線x=a交于點P,求$\overrightarrow{OB}$•$\overrightarrow{PO}$的值;
(3)若|AB|=$\frac{4}{3}$,求直線l的傾斜角.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

8.已知函數(shù)f(x)=$\sqrt{x+2}$-$\frac{1}{x-3}$.
(1)求函數(shù)y=f(x)的定義域;
(2)若函數(shù)y=f(x)+a在區(qū)間(-2,2)上有且僅有一個零點,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.$\overline{z}$為復數(shù)z的共軛復數(shù),i為虛數(shù)單位,且i•$\overline{z}$=1-i,則復數(shù)z的虛部為( 。
A.-iB.-1C.iD.1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

5.如圖,已知D點在⊙O直徑BC的延長線上,DA切⊙O于A點,DE是∠ADB的平分線,交AC于F點,交AB于E點.
(1)求證:AE=AF;
(2)若AB=AD,求$\frac{AD}{BD}$的值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

2.如圖,Rt△O′A′B′是△OAB的斜二測直觀圖,斜邊O′A′=2,則△OAB的面積是( 。
A.$\frac{{\sqrt{2}}}{2}$B.1C.$\sqrt{2}$D.$2\sqrt{2}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

3.下列說法中不正確的是( 。
A.對于線性回歸方程$\widehat{y}$=$\widehat$x+$\widehat{a}$,直線必經(jīng)過點($\overline{x}$,$\overline{y}$)
B.莖葉圖的優(yōu)點在于它可以保存原始數(shù)據(jù),并且可以隨時記錄
C.擲一枚均勻硬幣出現(xiàn)正面向上的概率是$\frac{1}{2}$,那么一枚硬幣投擲2次一定出現(xiàn)正面
D.將一組數(shù)據(jù)中的每一個數(shù)據(jù)都加上或減去同一常數(shù)后,方差恒不變

查看答案和解析>>

同步練習冊答案