1.已知△ABC的頂點B,C在橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$上,頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC上,則△ABC的周長是( 。
A.8B.8$\sqrt{3}$C.16D.24

分析 利用橢圓的定義轉(zhuǎn)化求解即可.

解答 解:△ABC的頂點B,C在橢圓$\frac{x^2}{16}+\frac{y^2}{9}=1$上,
頂點A是橢圓的一個焦點,且橢圓的另一個焦點在BC上,
由橢圓的定義可得:△ABC的周長是4a=4×4=16.
故選:C.

點評 本題考查橢圓的簡單性質(zhì)的應(yīng)用,考查計算能力.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.已知$f(x)=sin\frac{πx}{6}(x∈R)$,則f(1)+f(2)+f(3)+…+f(2017)=(  )
A.2017B.1C.$\frac{{\sqrt{2}}}{2}$D.$\frac{1}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.下列命題中的真命題是( 。
A.?x∈R使得sinx+cosx=1.5B.?x∈(0,π),sinx>cosx
C.?x∈R使得x2+x=-1D.?x∈(0,+∞),ex>x+1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知f(x)=$\left\{\begin{array}{l}{cosπx,(x<1)}\\{f(x-1),(x≥1)}\end{array}\right.$,求$f({\frac{1}{3}})+f({\frac{4}{3}})$的值( 。
A.0B.$\frac{1}{2}$C.1D.$\frac{3}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.過點(1,1)且與曲線y=x3相切的切線方程為( 。
A.y=3x-2B.y=$\frac{3}{4}$x+$\frac{1}{4}$
C.y=3x-2或y=$\frac{3}{4}$x+$\frac{1}{4}$D.y=3x-2或y=$\frac{3}{4}$x-$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.命題“$?{x_0}∈R,使得x_0^2≥0$”的命題的否定為?x∈R,使得x2<0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.一個盒子里裝有標(biāo)號分別為1,2,3,4的4張標(biāo)簽,從中隨機同時抽取兩張,
(1)求兩張標(biāo)簽上的數(shù)字為相鄰整數(shù)的概率.
(2)求兩張標(biāo)簽上的數(shù)字之和為5的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

10.已知$|\overrightarrow a|=5$,$|\overrightarrow b|=3$,且$\overrightarrow a•\overrightarrow b=-9$,則$\overrightarrow a$在$\overrightarrow b$上的射影的數(shù)量為-3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

11.設(shè)a=2,b=lg9,c=2sin$\frac{9π}{5}$,則a,b,c的大小關(guān)系為(  )
A.a>b>cB.a>c>bC.b>a>cD.c>a>b

查看答案和解析>>

同步練習(xí)冊答案