分析 (1)由正弦定理得:sinB(cosA-2cosC)=(2sinC-sinA)cosB,從而sinC=2sinA,由此能求出$\frac{sinA}{sinC}$的值.
(2)推導出c=2a,由余弦定理得a=1,c=2,由此能求出△ABC的面積.
解答 解:(1)∵在△ABC中,內(nèi)角A、B、C的對邊分別為a,b,c,
b(cosA-2cosC)=(2c-a)cosB.
∴由正弦定理得:sinB(cosA-2cosC)=(2sinC-sinA)cosB,
化簡,得:sin(A+B)=2sin(B+C),
∴sinC=2sinA,
∴$\frac{sinA}{sinC}$=$\frac{1}{2}$.
(2)∵$\frac{sinA}{sinC}$=$\frac{1}{2}$,∴c=2a,
由余弦定理得:b2=a2+c2-2accosB,
∵cosB=$\frac{1}{4}$,b=2,
∴4=a2+4a2-a2.解得a=1,c=2,
∵cosB=$\frac{1}{4}$,0<B<π,∴sinB=$\sqrt{1-(\frac{1}{4})^{2}}$=$\frac{\sqrt{15}}{4}$,
∴△ABC的面積S=$\frac{1}{2}acsinB$=$\frac{1}{2}×1×2×\frac{\sqrt{15}}{4}$=$\frac{\sqrt{15}}{4}$.
點評 本題考查三角形中兩角正弦值的比值的求法,考查三角形面積的求法,考查三角形面積、正弦定理、余弦定理、誘導公式、同角三角函數(shù)關系式等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數(shù)與方程思想,是中檔題.
科目:高中數(shù)學 來源: 題型:選擇題
A. | A>1 000和n=n+1 | B. | A>1 000和n=n+2 | C. | A≤1 000和n=n+1 | D. | A≤1 000和n=n+2 |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{3}$ | C. | $\frac{π}{4}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | $\frac{π}{2}$ | B. | $\frac{π}{4}$ | C. | $\frac{π}{3}$ | D. | $\frac{π}{6}$ |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:選擇題
A. | (-2,4) | B. | (4,6) | C. | (-6,-2) | D. | (-1,9) |
查看答案和解析>>
科目:高中數(shù)學 來源: 題型:解答題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com