在公差不為零的等差數(shù)列{an}中,a1=1,a1,a2,a5成等比數(shù)列.
(1)求an;
(2)設(shè)bn=
1
anan+1
,求b1+b2+…+bn的值;
(3)設(shè)cn=an-8,求數(shù)列{|cn|}的前n項(xiàng)和Tn
考點(diǎn):數(shù)列的求和,等比數(shù)列的性質(zhì)
專(zhuān)題:等差數(shù)列與等比數(shù)列
分析:(1)由已知得(1+d)2=1×(1+4d),由此能求出an=1+(n-1)×2=2n-1.
(2)由bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)
,利用裂項(xiàng)求和法能求出b1+b2+…+bn
(3)由cn=an-8=2n-9,得{cn}是首項(xiàng)為-7,公差為2的等差數(shù)列,由此能求出數(shù)列{|cn|}的前n項(xiàng)和Tn
解答: 解:(1)∵公差不為零的等差數(shù)列{an}中,a1=1,a1,a2,a5成等比數(shù)列,
∴(1+d)2=1×(1+4d),
解得d=2或d=0(舍),
∴an=1+(n-1)×2=2n-1.
(2)∵bn=
1
anan+1
=
1
(2n-1)(2n+1)
=
1
2
(
1
2n-1
-
1
2n+1
)

∴b1+b2+…+bn
=
1
2
(1-
1
3
+
1
3
-
1
5
+…+
1
2n-1
-
1
2n+1

=
1
2
(1-
1
2n+1
)

=
n
2n+1

(3)∵cn=an-8=2n-9,
∴{cn}是首項(xiàng)為-7,公差為2的等差數(shù)列,
由cn=2n-9≥0,得n
9
2
,
∴當(dāng)n≤4時(shí),Tn=-[-7n+
n(n-1)
2
×2
]=-n2+8n.
當(dāng)n≥5時(shí),Tn=[-7n+
n(n-1)
2
×2
]-2[-7×4+
4(4-1)
2
×2
]=n2-8n+32.
∴Tn=
-n2+8n,n≤4
n2-8n+32,n≥5
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式的求法,考查數(shù)列的前n項(xiàng)和的求法,解題時(shí)要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

如圖,PA⊥平面ABCD,四邊形ABCD是矩形,E、F分別是AB,PD的中點(diǎn).
(1)求證:AF∥平面PCE;
(2)若二面角P-CD-B為45°,AD=2,CD=3,求四面體FPCE的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知函數(shù)f(x)=x2-(a+2)x+3,x∈[a,b]的圖象關(guān)于直線(xiàn)x=1對(duì)稱(chēng),則b-a=
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知集合A={x|x<a},B={x|1<x<2},且A∪(∁RB)=R,則實(shí)數(shù)a的取值范圍是( 。
A、a≤1B、a<1
C、a≥2D、a>2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知某個(gè)幾何體的三視圖如圖所示,則這個(gè)幾何體的表面積是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

某公司生產(chǎn)一種電子儀器的固定成本為20 000元,每生產(chǎn)一臺(tái)儀器需增加投入100元,已知總收益滿(mǎn)足函數(shù):R(x)=
400x-
1
2
x2,(0≤x<400)
86000,(x≥400)
(其中x是儀器的月產(chǎn)量).
(1)將利潤(rùn)表示為月產(chǎn)量的函數(shù)f(x);
(2)當(dāng)月產(chǎn)量為何值時(shí),公司所獲利潤(rùn)最大?最大利潤(rùn)為多少元?(總收益=總成本+利潤(rùn))

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)向量
a
=(sinx,cosx),
b
=(cosx,cosx),x∈R,函數(shù)f(x)=
a
b

(Ⅰ)求函數(shù)f(x)的最小正周期與最大值;
(Ⅱ)求函數(shù)f(x)的單調(diào)遞增區(qū)間和對(duì)稱(chēng)軸.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

正三棱錐的高為1,底面邊長(zhǎng)為2,正三棱錐內(nèi)有一個(gè)球與其四個(gè)面相切.則球的表面積為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知變量x、y滿(mǎn)足約束條件
x+2y-3≤0
x+3y-3≥0
y-1≤0
,若目標(biāo)函數(shù)z=ax+y僅在點(diǎn)(3,0)處取到最大值,則實(shí)數(shù)a的取值范圍( 。
A、(
2
3
,+∞)
B、(-∞,
1
3
C、(
1
2
,+∞)
D、(
1
3
,+∞)

查看答案和解析>>

同步練習(xí)冊(cè)答案