8.如圖所示,輸出的x的值為17.

分析 執(zhí)行程序框圖,寫出每次循環(huán)得到的x的值,當(dāng)a=b=17時滿足條件a=b,輸出x的值為17.

解答 解:模擬程序的運行,可得
a=51,b=221
不滿足條件a=b,滿足b>a,b=221-51=170,
不滿足條件a=b,滿足b>a,b=170-51=119,
不滿足條件a=b,滿足b>a,b=119-51=68,
不滿足條件a=b,滿足b>a,b=68-51=17,
不滿足條件a=b,滿足a>b,a=51-17=34,
不滿足條件a=b,滿足a>b,a=34-17=17,
滿足條件a=b,x=17,輸出x的值為17.
故答案為:17.

點評 本題主要考察了程序框圖和算法,正確寫出每次循環(huán)得到的x的值是解題的關(guān)鍵,屬于基礎(chǔ)題.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

18.設(shè)a=60.7,b=log70.6,c=log0.60.7,則( 。
A.c>b>aB.b>c>aC.c>a>bD.a>c>b

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.設(shè)0<α<π,且sin($α+\frac{π}{4}$)=$\frac{3}{5}$,則tan($α+\frac{π}{4}$)的值是(  )
A.$\frac{3}{4}$B.-$\frac{3}{4}$C.$\frac{4}{3}$D.?-$\frac{4}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

16.若實數(shù)a,b,c滿足(a-2b-1)2+(a-c-lnc)2=0,則|b-c|的最小值是1.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.設(shè)F1和F2為雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的兩個焦點,若F1,F(xiàn)2,P(0,2b)是正三角形的三個頂點,則雙曲線的漸近線方程是( 。
A.y=±$\frac{\sqrt{3}}{3}$xB.y=±$\sqrt{3}$xC.y=±$\frac{\sqrt{21}}{7}$xD.y=±$\frac{\sqrt{21}}{3}$x

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

13.已知實數(shù)x,y滿足不等式組$\left\{\begin{array}{l}{x-y+3≥0}\\{2x+y-4≤0}\\{y+a≥0}\end{array}\right.$,若z=y-2x的最大值為7,則實數(shù)a=(  )
A.-1B.1C.$\frac{10}{3}$D.$\frac{11}{2}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

20.已知正實數(shù)x,y滿足xy+2x+3y=42,則xy+5x+4y的最小值為55.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

17.某程序框圖如圖所示,則輸出的結(jié)果S=( 。
A.26B.57C.120D.247

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.在直角坐標(biāo)系xOy中,圓C的方程為(x-1)2+(y-1)2=2,在以坐標(biāo)原點O為極點,x軸正半軸為極軸的極坐標(biāo)系中,直線l的極坐標(biāo)方程為$ρsin(θ+\frac{π}{4})=2\sqrt{2}$.
(1)寫出圓C的參數(shù)方程和直線l的普通方程;
(2)設(shè)點P為圓C上的任一點,求點P到直線l距離的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案