11.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0),過雙曲線上任意一點(diǎn)P分別作斜率為-$\frac{a}$和$\frac{a}$的兩條直線l1和l2,設(shè)直線l1與x軸、y軸所圍成的三角形的面積為S,直線l2與x軸、y軸所圍成的三角形的面積為T,則S•T的值為$\frac{{a}^{2}^{2}}{4}$.

分析 不妨設(shè)點(diǎn)P在第一象限,設(shè)點(diǎn)P(x0,y0),得到直線l1的方程為y-y0=-$\frac{a}$(x-x0),直線l2的方程為y-y0=$\frac{a}$(x-x0),再分別求出A,B,C,D的坐標(biāo),表示出S,T,計(jì)算ST即可.

解答 解:不妨設(shè)點(diǎn)P在第一象限,設(shè)點(diǎn)P(x0,y0
∴直線l1的方程為
y-y0=-$\frac{a}$(x-x0),
直線l2的方程為
y-y0=$\frac{a}$(x-x0),
∴A(0,y0+$\frac{a}$x0),
B(x0+$\frac{a}$x0,0),
D(0,y0-$\frac{a}$x0),
C(x0-$\frac{a}$y0,0),
∴S=$\frac{1}{2}$(y0+$\frac{a}$x0)(x0+$\frac{a}$x0),T=-$\frac{1}{2}$(y0-$\frac{a}$x0)(x0-$\frac{a}$y0),
∴ST=-$\frac{1}{4}$(y02-$\frac{a}$x02)(x02-$\frac{a}$y02)=$\frac{{a}^{2}^{2}}{4}$,
故答案為:$\frac{{a}^{2}^{2}}{4}$

點(diǎn)評(píng) 本題考查雙曲線的標(biāo)準(zhǔn)方程,以及雙曲線的簡(jiǎn)單性質(zhì)的應(yīng)用,比較基礎(chǔ).

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.若直線ax-y=0(a≠0)與函數(shù)$f(x)=\frac{{2{{cos}^2}x+1}}{{ln\frac{2+x}{2-x}}}$圖象交于不同的兩點(diǎn)A,B,且點(diǎn)C(6,0),若點(diǎn)D(m,n)滿足$\overrightarrow{DA}+\overrightarrow{DB}=\overrightarrow{CD}$,則m+n=( 。
A.1B.2C.3D.a

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

2.設(shè)函數(shù)f(x)=ex-|ln(-x)|的兩個(gè)零點(diǎn)為x1,x2,則( 。
A.x1x2<0B.x1x2=1C.x1x2>1D.0<x1x2<1

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

19.對(duì)于函數(shù)f(x),方程f(x)=x的解稱為f(x)的不動(dòng)點(diǎn),方程f[f(x)]=x的解稱為f(x)的穩(wěn)定點(diǎn).
①設(shè)函數(shù)f(x)的不動(dòng)點(diǎn)的集合為M,穩(wěn)定點(diǎn)的集合為N,則M⊆N;
②函數(shù)f(x)的穩(wěn)定點(diǎn)可能有無數(shù)個(gè);
③當(dāng)f(x)在定義域上單調(diào)遞增時(shí),若x0是f(x)的穩(wěn)定點(diǎn),則x0是f(x)的不動(dòng)點(diǎn);
上述三個(gè)命題中,所有真命題的序號(hào)是①②③.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

6.設(shè)向量$\overrightarrow{a}$、$\overrightarrow$的夾角為θ(其中0<θ≤π),|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2,若(2$\overrightarrow{a}$-$\overrightarrow$)⊥(k$\overrightarrow{a}$+$\overrightarrow$),則實(shí)數(shù)k的值為2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.如圖,網(wǎng)格紙上小正方形的邊長(zhǎng)為1,粗線畫出的是某幾何體的三視圖,則此幾何體的體積為( 。
A.12B.18C.24D.30

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.如圖,等邊三角形ABC與等腰直角三角形DBC公共邊BC,BC=$\sqrt{2}$,DB=DC,AD=$\sqrt{3}$.
(1)求證:BC⊥AD;
(2)求點(diǎn)B到平面ACD的距離.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

20.某大學(xué)有甲、乙兩個(gè)校區(qū).從甲校區(qū)到乙校區(qū)有A、B兩條道路.已知開車走道路A遭遇堵車的概率為$\frac{1}{5}$;開車走道路B遭遇堵車的概率為p.現(xiàn)有張、王、李三位教授各自開車從甲校區(qū)到乙校區(qū)給學(xué)生上課,張教授、王教授走道路A,李教授走道路B,且他們是否遭遇堵車相互之間沒有影響.若三人中恰有一人遭遇堵車的概率為$\frac{2}{5}$.求:(I)走道路B遭遇堵車的概率p;
(Ⅱ)三人中遭遇堵車的人數(shù)X的概率分布列和數(shù)學(xué)期望.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.已知三邊長(zhǎng)分別為4,5,6的△ABC的外接圓恰好是球O的一個(gè)大圓,P為球面上一點(diǎn),若三棱錐P-ABC體積的最大值為( 。
A.8B.10C.12D.14

查看答案和解析>>

同步練習(xí)冊(cè)答案