3.過(guò)點(diǎn)P(2,-3)且垂直于直線(xiàn)x-2y+1=0的直線(xiàn)方程是2x+y-1=0.

分析 根據(jù)兩直線(xiàn)垂直設(shè)出所求直線(xiàn)的方程,把點(diǎn)P坐標(biāo)代入求出未知系數(shù)即可.

解答 解:設(shè)與直線(xiàn)x-2y+1=0垂直的直線(xiàn)方程為
2x+y+c=0,
又該直線(xiàn)過(guò)點(diǎn)P(2,-3),
∴2×2-3+c=0,
解得c=-1,
∴所求的直線(xiàn)方程是2x+y-1=0.
故答案為:2x+y-1=0.

點(diǎn)評(píng) 本題考查了兩直線(xiàn)垂直的應(yīng)用問(wèn)題,是基礎(chǔ)題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

13.已知等差數(shù)列{an}滿(mǎn)足a5=a2+a3,a13=13.
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)設(shè)bn=$\frac{1}{2\sqrt{{a}_{n}}}$,數(shù)列{bn}前n項(xiàng)和為Sn,證明:$\sqrt{{a}_{n+1}}$-1<Sn<$\sqrt{{a}_{n}}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

14.在數(shù)列{an}中,a1=1,an•an-1=an-1+(-1)n(n≥2,n∈N*),則a3的值是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

11.設(shè)a∈R,若函數(shù)y=ex+ax,x∈R有小于零的極值點(diǎn),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1)B.(-1,+∞)C.(-1,0)D.(-∞,0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若數(shù)列{an}的前n項(xiàng)和Sn=$\frac{2}{3}$n2-$\frac{1}{3}$n   則數(shù)列中a3等于(  )
A.3B.4C.6D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.從數(shù)字0,1,2,3,4,5中任選3個(gè)數(shù)字,可組成沒(méi)有重復(fù)數(shù)字的三位數(shù)共有( 。
A.60B.90C.100D.120

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

15.某市居民自來(lái)水收費(fèi)標(biāo)準(zhǔn)如下:每戶(hù)每月用水不超過(guò)4噸時(shí),每噸為1.80元,當(dāng)用水超過(guò)4噸時(shí),超過(guò)部分每噸3.00元.某月甲、乙兩戶(hù)共交水費(fèi)y元,已知甲、乙兩用戶(hù)該月用水量分別為5x,3x噸.
(Ⅰ) 若x=1,求該月甲、乙兩戶(hù)的水費(fèi);
(Ⅱ) 求y關(guān)于x的函數(shù);
(Ⅲ) 若甲、乙兩戶(hù)該月共交水費(fèi)26.4元,分別求出甲、乙兩戶(hù)該月的用水量.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

12.為了解喜好體育運(yùn)動(dòng)是否與性別有關(guān),某報(bào)記者隨機(jī)采訪50個(gè)路人,將調(diào)查情況進(jìn)行整理后制成下表:
 年齡(歲)[15,25)[25,35)
 
[35,45)
 15
[45,55)
 
[55,65)
 
[65,75)
 
 頻數(shù) 510  8 10 5 5
 喜好人數(shù) 4 6  6 3
(1)在調(diào)查的結(jié)果中,喜好體育運(yùn)動(dòng)的女性有10人,不喜好體育運(yùn)動(dòng)的男性有5人,請(qǐng)將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷能否在犯錯(cuò)誤的概率不超過(guò)0.005的前提下認(rèn)為喜好體育運(yùn)動(dòng)與性別有關(guān)?說(shuō)明你的理由;
  喜好體育運(yùn)動(dòng) 不喜好體育運(yùn)動(dòng)合計(jì) 
 男生  5 
 女生 10  
 合計(jì)   50
(2)若從年齡在[15,25),[25,35)的被調(diào)查者中各隨機(jī)選取兩人進(jìn)行追蹤調(diào)查,記選中的4人中不喜好體育運(yùn)動(dòng)的人數(shù)為X,求隨機(jī)變量X的分布列和數(shù)學(xué)期望.
下面的臨界值表供參考:
 P(K2≥k)0.15 0.10 0.05  0.025 0.010 0.005 0.001
2.072 2.706  3.841 5.024 6.6357.879  10.828
(參考公式:K2=$\frac{n(ad-bc)^{2}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d)

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

16.離散型隨機(jī)變量ξ的分布列為:
ξ123
pp1p2$\frac{1}{4}$
且Eξ=2,則p1=$\frac{1}{4}$;p2=$\frac{1}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案