14.在數(shù)列{an}中,a1=1,an•an-1=an-1+(-1)n(n≥2,n∈N*),則a3的值是( 。
A.$\frac{1}{2}$B.$\frac{2}{3}$C.$\frac{3}{4}$D.1

分析 由已知得a2•1=a1+(-1)2=1+1=2,從而得到a2=2,從而能求出a3

解答 解:∵在數(shù)列{an}中,a1=1,an•an-1=an-1+(-1)n(n≥2,n∈N*),
∴a2•1=a1+(-1)2=1+1=2,解得a2=2,
a3×2=a2+(-1)3=2-1=1.
故選:D.

點(diǎn)評 本題考查數(shù)列的第3項(xiàng)的求法,是基礎(chǔ)題,解題時要認(rèn)真審題,注意等差數(shù)列的性質(zhì)的合理運(yùn)用.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

13.已知函數(shù)f(x)是R上的偶函數(shù),g(x)是R上的奇函數(shù),且g(x)=f(x-1),若f(-2)=2,則f(2018)=2.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=mx2-mx-1
(1)若對于x∈R,f(x)<0恒成立,求實(shí)數(shù)m的取值范圍;
(2)若?x∈[1,3]使得f(x)<5-m成立,求實(shí)數(shù)m的取值范圍.
(3)解關(guān)于x的不等式f(x)≤x-2(m≠0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

2.在由1,2,3,4,5組成可重復(fù)數(shù)字的二位數(shù)中任取一個數(shù),如21,22等表示的數(shù)中只有一個偶數(shù)“2”,我們稱這樣的數(shù)只有一個偶數(shù)數(shù)字,則組成的二位數(shù)中只有一個偶數(shù)數(shù)字的概率為$\frac{14}{25}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知實(shí)數(shù)m,n∈{1,2,3,4},若m≠n,則函數(shù)$f(x)=|{m-n}|{x^{\frac{n}{m}}}$為冪函數(shù)且為偶函數(shù)的概率為( 。
A.$\frac{1}{2}$B.$\frac{1}{4}$C.$\frac{1}{6}$D.$\frac{2}{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

19.已知函數(shù)f(x)=-x3+ax2+bx+c(a,b,c∈R)在區(qū)間(-∞,0)內(nèi)單調(diào)遞減,在區(qū)間(0,1)內(nèi)單調(diào)遞增,且f(x)在R上有三個零點(diǎn),1是其中一個零點(diǎn).
(1)求f(3)的取值范圍;
(2)若直線l:y=x-1在曲線C:x=f(x)的上方部分所對應(yīng)的x的集合(-∞,1),試求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.下列求導(dǎo)運(yùn)算,正確的是( 。
A.(cosx)′=sinxB.${(\frac{sinx}{x^2})^'}=\frac{cosx}{2x}$
C.(ex)′=xex-1D.${(lgx)^'}=\frac{1}{xln10}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過點(diǎn)P(2,-3)且垂直于直線x-2y+1=0的直線方程是2x+y-1=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

7.已知${\vec e_1}$,${\vec e_2}$是同一平面內(nèi)兩個不共線的向量,
(1)如果$\overrightarrow{AB}$=${\vec e_1}$+${\vec e_2}$,$\overrightarrow{CB}$=2${\vec e_1}$-${\vec e_2}$,$\overrightarrow{CD}$=4${\vec e_1}$+${\vec e_2}$,求證A、B、D三點(diǎn)共線;
(2)試確定實(shí)數(shù)k的值,使$k{\vec e_1}+4{\vec e_2}$和${\vec e_1}+k{\vec e_2}$共線.

查看答案和解析>>

同步練習(xí)冊答案