13.若log3a<log3b<0,則(  )
A.0<b<a<1B.0<a<b<1C.b>a>1D.a>b>1

分析 由y=log3x是增函數(shù),能求出a,b的大小關(guān)系.

解答 解:∵log3a<log3b<0=log31,
y=log3x是增函數(shù),
∴0<a<b<1.
故選:B.

點(diǎn)評(píng) 本題考查兩個(gè)數(shù)的大小的判斷,是基礎(chǔ)題,解題時(shí)要認(rèn)真審題,注意對(duì)數(shù)函數(shù)的單調(diào)性的合理運(yùn)用.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

3.過(guò)點(diǎn)(1,0)作傾斜角為$\frac{3π}{4}$的直線與y2=4x交于A、B,則AB的弦長(zhǎng)為.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.若正整數(shù)N除以正整數(shù)m后的余數(shù)為n,則記為N=n(modm),例如11=4(mod7),如圖所示的程序框圖的算法源于我國(guó)古代聞名中外的《中國(guó)剩余定理》,執(zhí)行該程序框圖,則輸出的n=( 。
A.14B.15C.16D.17

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

1.運(yùn)行如圖所示的程序框圖,輸出的結(jié)果S=( 。
A.14B.30C.62D.126

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

8.已知函數(shù)f(x)=$\frac{2x}{{x}^{2}-1}$
(1)用定義證明該函數(shù)在[1,+∞)上是減函數(shù)
(2)判斷該函數(shù)的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.若橢圓C1:$\frac{{x}^{2}}{{{a}_{1}}^{2}}$+$\frac{{y}^{2}}{{_{1}}^{2}}$=1(a1>b1>0)和橢圓C2:$\frac{{x}^{2}}{{{a}_{2}}^{2}}$+$\frac{{y}^{2}}{{_{2}}^{2}}$=1(a2>b2>0)的焦點(diǎn)相同且a1>a2.給出如下四個(gè)結(jié)論:
①橢圓C1與橢圓C2一定沒有公共點(diǎn)        
②$\frac{{a}_{1}}{{a}_{2}}$>$\frac{_{1}}{_{2}}$
③a12-a22=b12-b22
④a1-a2=b1-b2
其中所有正確結(jié)論的序號(hào)是(  )
A.①②③B.①③④C.①②④D.②③④

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

5.函數(shù)f(x)=x4+x2的奇偶性是(  )
A.偶函數(shù)B.奇函數(shù)C.非奇非偶D.無(wú)法判斷

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

2.如圖,在多面體ABCDEF中,四邊形ABCD是正方形,AB=2EF=2,EF∥AB,EF⊥FB,∠BFC=90°,BF=FC,H為BC的中點(diǎn),
(1)求證:AC⊥平面EDB;
(2)求四面體B-DEF的體積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

3.解下列不等式:
(1)x2-7x+12>0;           
(2)-x2-2x+3≥0;
(3)x2-2x+1<0;            
(4)x2-2x+2>0.

查看答案和解析>>

同步練習(xí)冊(cè)答案