分析 (1)根據(jù)函數(shù)單調(diào)性定義法證明步驟:取值、作差、變形、定號(hào)、下結(jié)論,進(jìn)行證明即可;
(2)由解析式求出定義域,化簡(jiǎn)f(-x)后由函數(shù)奇偶性的定義判斷即可.
解答 證明:(1)任取1≤x1<x2,
則f(x2)-f(x1)=$\frac{2{x}_{2}}{{{x}_{2}}^{2}+1}$-$\frac{2{x}_{1}}{{{x}_{1}}^{2}+1}$
=$\frac{2{x}_{2}{{x}_{1}}^{2}+2{x}_{2}-2{x}_{1}{{x}_{2}}^{2}-2{x}_{1}}{{{({{x}_{1}}^{2}+1)(x}_{2}}^{2}+1)}$
=$\frac{2{x}_{1}{x}_{2}({x}_{1}-{x}_{2})+2({x}_{2}-{x}_{1})}{{({{x}_{1}}^{2}+1){(x}_{2}}^{2}+1)}$
=$\frac{2({x}_{2}-{x}_{1})(1-{x}_{1}{x}_{2})}{({{x}_{1}}^{2}+1){{(x}_{2}}^{2}+1)}$,
∵1≤x1<x2,∴x1x2>1,∴1-x1x2<0,
∴f(x2)<f(x1),∴f(x)在[1,+∞)上是減函數(shù).
(2)∵f(x)的定義域?yàn)镽,f(-x)=$\frac{2(-x)}{(-x)^{2}+1}$=$-\frac{2x}{{x}^{2}+1}$=-f(x),
∴f(x)為奇函數(shù).
點(diǎn)評(píng) 本題考查函數(shù)單調(diào)性定義法證明步驟:取值、作差、變形、定號(hào)、下結(jié)論,以及函數(shù)奇偶性的判斷方法:定義法,注意先求出函數(shù)的定義域,考查化簡(jiǎn)、變形能力.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 若m∥α,α∥β,則m∥β | B. | 若α⊥β,m?α,則m⊥β | ||
C. | 若m⊥α,m∥n,α⊥β,則n∥β | D. | 若m⊥α,m∥n,α∥β,則n⊥β |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com