4.已知全集U=R,集合A={x|-1<x<3},B={x|0<x<5},求A∩B,(∁UA)∪B,A∩(∁UB).

分析 根據(jù)交集、并集、補(bǔ)集的運(yùn)算即可求解本題.

解答 解:∵全集U=R,集合A={x|-1<x<3},B={x|0<x<5},
∴A∩B={x|0<x<3},
CUA∩B={x|3≤x<5},
A∩CUB={x|-1<x≤0}.

點(diǎn)評 考查交集、并集、補(bǔ)集的概念及運(yùn)算,要分清求的并集還是交集.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.已知函數(shù)f(x)=ax+lnx,其中a∈R.
(Ⅰ)若f(x)在區(qū)間[1,2]上為增函數(shù),求a的取值范圍;
(Ⅱ)當(dāng)a=-e時(shí),
(ⅰ)證明:f(x)+2≤0;
(ⅱ)試方程|f(x)|=$\frac{lnx}{x}$+$\frac{3}{2}$是否有實(shí)數(shù)解,并說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

15.已知函數(shù)f(x)=xex,現(xiàn)有下列五種說法:
①函數(shù)f(x)為奇函數(shù);
②函數(shù)f(x)的減區(qū)間為(-∞,1),增區(qū)間為(1,+∞);
③函數(shù)f(x)的圖象在x=0處的切線的斜率為1;
④函數(shù)f(x)的最小值為$-\frac{1}{e}$.
其中說法正確的序號是③④(請寫出所有正確說法的序號).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

12.已知函數(shù)f(x)=ax3-3x2+1-$\frac{3}{a}$.
(1)求函數(shù)f(x)的單調(diào)區(qū)間;
(2)若A(x1,y1),B(x2,y2)為曲線y=f(x)上兩點(diǎn),線段AB與x軸有公共點(diǎn),且x1,x2均為y=f(x)的極值點(diǎn),求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.已知可導(dǎo)函數(shù)f(x)(x∈R)的導(dǎo)函數(shù)f′(x)滿足f′(x)>f(x),則當(dāng)a≥0時(shí),f(a)和eaf(0)(e是自然對數(shù)的底數(shù))大小關(guān)系為(  )
A.f(a)≥eaf(0)B.f(a)>eaf(0)C.f(a)≤eaf(0)D.f(a)<eaf(0)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

9.函數(shù)f(x)=ax3+3x2+3x(a≠0).
(Ⅰ)當(dāng)a=1時(shí),求曲線y=f(x)在點(diǎn)(1,f(1))處的切線方程;
(Ⅱ)若f(x)在區(qū)間(1,2)內(nèi)是增函數(shù),求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

16.已知函數(shù)f(x)的導(dǎo)函數(shù)圖象如圖所示,若△ABC為鈍角三角形,且∠C為鈍角,則一定成立的是( 。
A.f(cosA)<f(cosB)B.f(sinA)<f(cosB)C.f(sinA)>f(cosB)D.f(sinA)>f(sinB)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.寫出命題“如果x=3或x=7,則(x-3)(x-7)=0”的逆命題、否命題和逆否命題,并判斷真假.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

14.某校開設(shè)了“數(shù)學(xué)”、“剪紙”、“美術(shù)”三個(gè)社團(tuán),三個(gè)社團(tuán)參加的人數(shù)如表所示,為了解學(xué)生對社團(tuán)的意見,學(xué)校采用分層抽樣的方法從三個(gè)社團(tuán)中抽取一個(gè)容量為n的樣本,已知從“剪紙”社團(tuán)抽取的同學(xué)比從“數(shù)學(xué)”社團(tuán)抽取的同學(xué)少2人.
社團(tuán)數(shù)學(xué)剪紙美術(shù)
人數(shù)320240200
(1)求“剪紙”社團(tuán)抽取了多少人;
(2)設(shè)從“剪紙”社團(tuán)抽取的同學(xué)中有2名女生,現(xiàn)要從“剪紙”社團(tuán)中隨機(jī)選出2人擔(dān)任社團(tuán)活動(dòng)監(jiān)督的職務(wù),求至少有1名女生被選中的概率.

查看答案和解析>>

同步練習(xí)冊答案