A. | [0,12] | B. | [2,10] | C. | [0,10] | D. | [2,12] |
分析 根據(jù)題意,設(shè)f(2)=λf(1)+μf(-1),結(jié)合題中函數(shù)關(guān)系式建立關(guān)于λ、μ的方程組解出λ=3且μ=1,從而得到f(2)=3f(1)+f(-1),最后利用不等式的基本性質(zhì)將同向不等式相加,即得f(2)的取值范圍.
解答 解:∵f(x)=ax2+bx,
∴f(1)=a+b,f(-1)=a-b,f(2)=4a+2b
設(shè)f(2)=λf(1)+μf(-1),
則$\left\{\begin{array}{l}{4=λ+μ}\\{2=λ-μ}\end{array}\right.$,解之得λ=3且μ=1,
即f(2)=3f(1)+f(-1),
∵1≤f(1)≤3,∴3≤3f(1)≤9…①
又∵-1≤f(-1)≤1,…②
∴不等式①②相加,
得2≤3f(1)+f(-1)≤10,
即2≤f(2)≤10,
故f(2)的取值范圍是[2,10],
故選:B.
點評 本題給出二次函數(shù)在已知f(1)、f(-1)的范圍性質(zhì)下求f(2)的范圍.著重考查了不等式的基本性質(zhì)和簡單的性質(zhì)規(guī)劃等知識,屬于基礎(chǔ)題.
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | {x|l<x<2} | B. | {x|l≤x≤2} | C. | {x|l≤x<2} | D. | {x|0≤x<2} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
答對題目數(shù) | [0,8) | 8 | 9 | 10 |
女 | 30 | 4 | 4 | 2 |
男 | 20 | 20 | 16 | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | A∩B={x|x<0} | B. | A∪B=R | C. | A∩B={x|x<1} | D. | A∪B={x|x<0} |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向右平移$\frac{π}{6}$個單位長度,得到曲線C2 | |
B. | 把C1上各點的橫坐標(biāo)伸長到原來的2倍,縱坐標(biāo)不變,再把得到的曲線向左平移 $\frac{π}{12}$個單位長度,得到曲線C2 | |
C. | 把C1上各點的橫坐標(biāo)縮短到原來的$\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向右平移 $\frac{π}{6}$個單位長度,得到曲線C2 | |
D. | 把C1上各點的橫坐標(biāo)縮短到原來的 $\frac{1}{2}$倍,縱坐標(biāo)不變,再把得到的曲線向左平移 $\frac{π}{12}$個單位長度,得到曲線C2 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{π}{6}$ | B. | $\frac{π}{3}$ | C. | $\frac{2π}{3}$ | D. | $\frac{3π}{6}$ |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com