14.設(shè)變量x,y滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x+y-3≤0}\\{x-2y+6≥0}\end{array}\right.$,則目標(biāo)函數(shù)z=2x-y的最小值為-12.

分析 先根據(jù)條件畫出可行域,再利用z=2x-y,幾何意義求最值,將最小值轉(zhuǎn)化為y軸上的截距最大,只需求出直線z=2x-y,過可行域內(nèi)的點(diǎn)A(-6,0)時的最小值,從而得到z最小值即可.

解答 解:設(shè)變量x、y滿足約束條件$\left\{\begin{array}{l}{y≥0}\\{x+y-3≤0}\\{x-2y+6≥0}\end{array}\right.$,在坐標(biāo)系中畫出可行域三角形,
平移直線2x-y=0經(jīng)過點(diǎn)A(-6,0)時,2x-y最小,最小值為:-12,
則目標(biāo)函數(shù)z=2x-y的最小值為-12.
故答案為:-12.

點(diǎn)評 借助于平面區(qū)域特性,用幾何方法處理代數(shù)問題,體現(xiàn)了數(shù)形結(jié)合思想、化歸思想.線性規(guī)劃中的最優(yōu)解,通常是利用平移直線法確定.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:填空題

3.過拋物線C:y2=4x的焦點(diǎn)F作直線l將拋物線C于A、B,若|AF|=4|BF|,則直線l的斜率是$±\frac{4}{3}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

5.已知函數(shù)f(x)=$\frac{1}{3}$x3-ax+4(a∈R).
(Ⅰ)求函數(shù)f(x)的單調(diào)區(qū)間;
(Ⅱ)若對任意的a∈[1,4),都存在x0∈(2,3]使得不等式f(x0)+ea+2a>m成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

2.已知函數(shù)f(x)=|x-1|+a|x+2|.
(Ⅰ)當(dāng)a=1時,求不等式f(x)≥5的解集;
(Ⅱ)當(dāng)a<-1時,若f(x)的圖象與x軸圍成的三角形面積等于6,求a的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.已知函數(shù)f(x)=$\left\{\begin{array}{l}{xln(1+x)+{x}^{2},x≥0}\\{-xln(1-x)+{x}^{2},x<0}\end{array}\right.$,若f(-a)+f(a)≤2f(1),則實(shí)數(shù)a的取值范圍是( 。
A.(-∞,-1]∪[1,+∞)B.[-1,0]C.[0,1]D.[-1,1]

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

19.某幾何體的三視圖如圖所示,則該幾何體的體積為( 。
A.3$\sqrt{3}$B.$\sqrt{3}$C.$\frac{4}{3}$$\sqrt{3}$D.$\frac{5}{3}$$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知雙曲線C:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{^{2}}$=1(a>0,b>0)的左頂點(diǎn)為A,右焦點(diǎn)為F(c,0),直線x=c與雙曲線C在第一象限的交點(diǎn)為P,過F的直線l與雙曲線C過二、四象限的漸近線平行,且與直線AP交于點(diǎn)B,若△ABF與△PBF的面積的比值為2,則雙曲線C的離心率為( 。
A.$\frac{5}{3}$B.$\frac{3\sqrt{2}}{2}$C.$\sqrt{2}$D.$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

3.已知橢圓C:$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)經(jīng)過點(diǎn)($\sqrt{2}$,1),且離心率為$\frac{\sqrt{2}}{2}$.
(Ⅰ)求橢圓C的方程;
(Ⅱ)設(shè)M、N是橢圓C上的點(diǎn),直線OM與ON(O為坐標(biāo)原點(diǎn))的斜率之積為-$\frac{1}{2}$,若動點(diǎn)P滿足$\overrightarrow{OP}$=$\overrightarrow{OM}$+2$\overrightarrow{ON}$,試探究,是否存在兩個定點(diǎn)F1,F(xiàn)2,使得|PF1|+|PF2|為定值?若存在,求F1,F(xiàn)2的坐標(biāo),若不存在,請說明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

4.已知直線ax+y+a+1=0,不論a取何值,該直線恒過的定點(diǎn)是( 。
A.(-1,-1)B.(-1,1)C.(1,1)D.(1,-1)

查看答案和解析>>

同步練習(xí)冊答案