7.已知A,B是半徑為$2\sqrt{3}$的球面上的兩點,過AB作互相垂直的兩個平面α、β,若α,β截該球所得的兩個截面的面積之和為16π,則線段AB的長度是( 。
A.$\sqrt{2}$B.2C.$2\sqrt{2}$D.4

分析 設過AB作互相垂直的兩個平面α、β截該球所得的兩個截面圓分別為圓O1,O2,半徑分別為r1,r2,球半徑為R,
則有$\left\{\begin{array}{l}{{R}^{2}=O{{O}_{1}}^{2}+{{r}_{1}}^{2}}\\{{R}^{2}=O{{O}_{2}}^{2}+{{r}_{2}}^{2}}\end{array}\right.$,⇒$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}=2{R}^{2}-(O{{O}_{1}}^{2}+O{{O}_{2}}^{2}$)
由$π{{r}_{1}}^{2}+π{{r}_{2}}^{2}=16π$⇒${{r}_{1}}^{2}+{{r}_{2}}^{2}=16$
由OH2=$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}$=8,得AB=2$\sqrt{{R}^{2}-O{H}^{2}}=4$

解答 解:如圖所示:設過AB作互相垂直的兩個平面α、β截該球所得的兩個截面圓分別為圓O1,O2,半徑分別為r1,r2,球半徑為R,
則有$\left\{\begin{array}{l}{{R}^{2}=O{{O}_{1}}^{2}+{{r}_{1}}^{2}}\\{{R}^{2}=O{{O}_{2}}^{2}+{{r}_{2}}^{2}}\end{array}\right.$,⇒$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}=2{R}^{2}-({{r}_{1}}^{2}+{{r}_{2}}^{2})$
又因為α,β截該球所得的兩個截面的面積之和為16π,∴$π{{r}_{1}}^{2}+π{{r}_{2}}^{2}=16π$⇒${{r}_{1}}^{2}+{{r}_{2}}^{2}=16$
∴,$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}=2{R}^{2}-({{r}_{1}}^{2}+{{r}_{2}}^{2})$=2×$(2\sqrt{3})^{2}-16=8$.
∵OH2=$O{{O}_{1}}^{2}+O{{O}_{2}}^{2}$=8,∴AB=2$\sqrt{{R}^{2}-O{H}^{2}}=4$
故選:D

點評 本題考查了球的性質,把空間問題轉化為平面問題是解題的關鍵,屬于中檔題,

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:選擇題

17.已知$sin(α-\frac{π}{12})=\frac{1}{3}$,則$cos(α+\frac{5π}{12})$的值等于( 。
A.$\frac{1}{3}$B.$\frac{{2\sqrt{2}}}{3}$C.$-\frac{1}{3}$D.$-\frac{{2\sqrt{2}}}{3}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

18.某學校門前的樹上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨立,若都在通電后的4秒內任一時刻等可能發(fā)生,然后每串彩燈以2秒為間隔閃亮.那么這兩串彩燈同時通電后,它們第一次閃亮的時刻相差不超過1秒的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

15.已知f(x)=ex與g(x)=ax+b的圖象交于P(x1,y1),Q(x2,y2)兩點.
(Ⅰ)求函數(shù)h(x)=f(x)-g(x)的最小值;
(Ⅱ)且PQ的中點為M(x0,y0),求證:f(x0)<a<y0

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.已知函數(shù)f(x)=log2x,g(x)=x2,則函數(shù)y=g(f(x))-x零點的個數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.在(1+x3)(1-x)8的展開式中,x5的系數(shù)是( 。
A.-28B.-84C.28D.84

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.某學校要從高一年級的752名學生中選取5名學生代表去敬老院慰問老人,若采用系統(tǒng)抽樣方法,首先要隨機剔除2名學生,再從余下的750名學生中抽取5名學生,則其中學生甲被選中的概率為( 。
A.$\frac{1}{150}$B.$\frac{2}{752}$C.$\frac{2}{150}$D.$\frac{5}{752}$

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:解答題

3.已知函數(shù)f(x)=2x3-9x2+12x+8a.
(1)求f(x)的極大值和極小值;
(2)若對任意的x∈[0,4],f(x)<4a2恒成立,求實數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

4.函數(shù)$f(x)={e^x}+\frac{1}{x}$(x>0),若x0滿足f'(x0)=0,設m∈(0,x0),n∈(x0,+∞),則(  )
A.f'(m)<0,f'(n)<0B.f'(m)>0,f'(n)>0C.f'(m)<0,f'(n)>0D.f'(m)>0,f'(n)<0

查看答案和解析>>

同步練習冊答案