分析 令log2x=t,將y表示為關(guān)于t的函數(shù)y=t2-2t,借助函數(shù)圖象的交點個數(shù)判斷.
解答 解:令f(x)=log2x=t,得x=2t,
∴y=g(f(x))-x=g(t)-2t=t2-2t,
令t2-2t=0得t=2或t=4,
作出y=t2和y=2t的函數(shù)圖象,
由圖象可知t2-2t=0在(-∞,0)上有一解,
故方程t2-2t=0共有3解,
又f(x)=log2x是單調(diào)函數(shù),
∴f(x)=t有3解,
∴y=g(f(x))-x有3個零點.
故答案為3.
點評 本題考查了函數(shù)零點與函數(shù)圖象的關(guān)系,屬于中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | (-∞,-1] | B. | (-∞,0) | C. | (0,1) | D. | (0,+∞) |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $({0,\frac{1}{2}})∪({2{e^{\frac{3}{2}}},+∞})$ | B. | $({-∞,\frac{1}{2}})∪({4{e^{\frac{3}{2}}},+∞})$ | C. | $({-∞,2{e^{\frac{3}{2}}}})$ | D. | $({-∞,1})∪({4{e^{\frac{3}{2}}},+∞})$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\sqrt{2}$ | B. | 2 | C. | $2\sqrt{2}$ | D. | 4 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 1 | B. | $\frac{3}{4}$ | C. | $\sqrt{3}$ | D. | $\frac{4}{3}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | a>b>c | B. | a>c>b | C. | c>a>b | D. | c>b>a |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com