13.若對(duì)任意的實(shí)數(shù)a,函數(shù)f(x)=(x-1)lnx-ax+a+b有兩個(gè)不同的零點(diǎn),則實(shí)數(shù)b的取值范圍是( 。
A.(-∞,-1]B.(-∞,0)C.(0,1)D.(0,+∞)

分析 作出y=(x-1)lnx與y=a(x-1)-b的函數(shù)圖象,根據(jù)兩圖象恒有兩個(gè)交點(diǎn)得出直線定點(diǎn)的位置,從而得出b的范圍.

解答 解:令f(x)=0得(x-1)lnx=a(x-1)-b,
令g(x)=(x-1)lnx,則g′(x)=lnx+1-$\frac{1}{x}$,
∴當(dāng)0<x<1時(shí),g′(x)<0,當(dāng)x>1時(shí),g′(x)>0,
∴g(x)在(0,1)上單調(diào)遞減,在(1,+∞)上單調(diào)遞增,
作出y=(x-1)lnx與y=a(x-1)-b的大致函數(shù)圖象,

∵f(x)很有兩個(gè)不同的零點(diǎn),
∴y=a(x-1)-b與g(x)=(x-1)lnx恒有兩個(gè)交點(diǎn),
∵直線y=a(x-1)-b恒過(guò)點(diǎn)(1,-b),
∴-b>0,即b<0.
故選B.

點(diǎn)評(píng) 本題考查了函數(shù)零點(diǎn)與函數(shù)圖象的關(guān)系,函數(shù)單調(diào)性的判斷與極值計(jì)算,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

3.若a∈[1,6],則函數(shù)$y=\frac{{{x^2}+a}}{x}$在區(qū)間[2,+∞)內(nèi)單調(diào)遞增的概率是( 。
A.$\frac{1}{5}$B.$\frac{2}{5}$C.$\frac{3}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

4.函數(shù)y=2cos2x-sin2x的最小值是( 。
A.-2B.$1-\sqrt{2}$C.$1+\sqrt{2}$D.2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

1.在數(shù)列的每相鄰兩項(xiàng)之間插入此兩項(xiàng)的積,形成新的數(shù)列,這樣的操作叫做該數(shù)列的一次“擴(kuò)展”.將數(shù)列1,2進(jìn)行“擴(kuò)展”,第一次得到數(shù)列1,2,2;第二次得到數(shù)列1,2,2,4,2;….設(shè)第n次“擴(kuò)展”后所得數(shù)列為1,x1,x2,…,xm,2,并記an=log2(1•x1•x2•…•xm•2),則數(shù)列{an}的通項(xiàng)公式為${a_n}=\frac{{{3^n}+1}}{2}$,n∈N*.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

8.邊長(zhǎng)為4的正三角形ABC中,點(diǎn)D在邊AB上,$\overrightarrow{AD}$=$\frac{1}{2}$$\overrightarrow{DB}$,M是BC的中點(diǎn),則$\overrightarrow{AM}$•$\overrightarrow{CD}$=( 。
A.16B.$12\sqrt{3}$C.$-8\sqrt{3}$D.-8

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:選擇題

18.某學(xué)校門前的樹(shù)上掛了兩串彩燈.這兩串彩燈的第一次閃亮相互獨(dú)立,若都在通電后的4秒內(nèi)任一時(shí)刻等可能發(fā)生,然后每串彩燈以2秒為間隔閃亮.那么這兩串彩燈同時(shí)通電后,它們第一次閃亮的時(shí)刻相差不超過(guò)1秒的概率是( 。
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.$\frac{7}{8}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:解答題

5.已知橢圓E的焦點(diǎn)在x軸上,長(zhǎng)軸長(zhǎng)為2$\sqrt{5}$,離心率為$\frac{2\sqrt{5}}{5}$;拋物線G:y2=2px(p>0)的焦點(diǎn)F與橢圓E的右焦點(diǎn)重合,若斜率為k的直線l過(guò)拋物線G的焦點(diǎn)F與橢圓E交于A,B兩點(diǎn),與拋物線G相交于C,D兩點(diǎn).
(1)求橢圓E及拋物線G的方程;
(2)證明:存在實(shí)數(shù)λ,使得$\frac{2}{|AB|}$+$\frac{λ}{CD}$為常數(shù),并求λ的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

2.已知函數(shù)f(x)=log2x,g(x)=x2,則函數(shù)y=g(f(x))-x零點(diǎn)的個(gè)數(shù)為3.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:填空題

10.已知f(x)=sin$\frac{π}{3}$(x+1)-$\sqrt{3}$cos$\frac{π}{3}$(x+1),則f(1)+f(2)+…+f(2016)+f(2017)=$\sqrt{3}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案