分析 (1)利用二倍角公式和降次公式以及輔助角公式化簡(jiǎn)可得$Asin(ωx+φ)+B(其中A>0,ω>0,|φ|<\frac{π}{2})$的形式;
(2)根據(jù)三角函數(shù)的性質(zhì)求解單調(diào)遞增區(qū)間;
(3)x在$[\frac{π}{2},π]$上,求出內(nèi)層函數(shù)的范圍,結(jié)合三角函數(shù)的性質(zhì)最大值和最小值.
解答 解:(1)函數(shù)f(x)=$\sqrt{6}sin\frac{x}{2}cos\frac{x}{2}-\sqrt{2}{cos^2}\frac{x}{2}$.
化簡(jiǎn)可得:f(x)=$\frac{\sqrt{6}}{2}$sinx-$\sqrt{2}$($\frac{1}{2}+\frac{1}{2}$cosx)=$\frac{\sqrt{6}}{2}$sinx-$\frac{\sqrt{2}}{2}$cosx-$\frac{\sqrt{2}}{2}$=$\sqrt{2}$sin(x-$\frac{π}{6}$)$-\frac{\sqrt{2}}{2}$
(2)由$2kπ-\frac{π}{2}≤x-\frac{π}{6}≤2kπ+\frac{π}{2}$,k∈Z,
可得:$2kπ-\frac{π}{3}$≤x≤$2kπ+\frac{2π}{3}$,
∴f(x)的單調(diào)遞增區(qū)間為[$2kπ-\frac{π}{3}$,$2kπ+\frac{2π}{3}$]
(3)∵x∈$[\frac{π}{2},π]$上,
∴x-$\frac{π}{6}$∈[$\frac{π}{3}$,$\frac{5π}{6}$],
∴當(dāng)x-$\frac{π}{6}$=$\frac{π}{2}$時(shí),函數(shù)f(x)取得最大值為$\frac{\sqrt{2}}{2}$.
當(dāng)x-$\frac{π}{6}$=$\frac{5π}{6}$時(shí),函數(shù)f(x)取得最小值為0.
點(diǎn)評(píng) 本題主要考查三角函數(shù)的圖象和性質(zhì),利用三角函數(shù)公式將函數(shù)進(jìn)行化簡(jiǎn)是解決本題的關(guān)鍵
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 三個(gè)內(nèi)角都不大于 60° | B. | 三個(gè)內(nèi)角至多有一個(gè)大于 60° | ||
C. | 三個(gè)內(nèi)角都大于60° | D. | 三個(gè)內(nèi)角至多有兩個(gè)大于 60° |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:填空題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | $\frac{9}{2}$ | B. | 7 | C. | 9 | D. | 8 |
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com