7.已知數(shù)列{an}的通項公式an=5-n,其前n項和為Sn,將數(shù)列{an}的前4項抽去其中一項后,剩下三項按原來順序恰為等比數(shù)列{bn}的前3項,記{bn}的前n項和為Tn,若存在m∈N*,使對任意n∈N*,總有Sn<Tn+λ恒成立,則實數(shù)λ的取值范圍是($\frac{5}{2}$,+∞).

分析 由an=5-n,可得:a1=4,a2=3,a3=2,a4=1,可知:抽去a2=3,剩下的3項4,2,1為等比數(shù)列{bn}的前3項,則b1=4,b2=2,公比q=$\frac{2}{4}$=$\frac{1}{2}$.利用求和公式可得:{bn}前n項和為Tn.又Sn=$\frac{n(4+5-n)}{2}$,由存在m∈N*,使對任意n∈N*,總有Sn<Tn+λ恒成立,利用單調(diào)性即可得出.

解答 解:由an=5-n,可得:a1=4,a2=3,a3=2,a4=1,可知:抽去a2=3,剩下的3項4,2,1為等比數(shù)列{bn}的前3項,則b1=4,b2=2,公比q=$\frac{2}{4}$=$\frac{1}{2}$.
記{bn}前n項和為Tn=$\frac{4[1-(\frac{1}{2})^{n}]}{1-\frac{1}{2}}$=8$[1-(\frac{1}{2})^{n}]$.
又Sn=$\frac{n(4+5-n)}{2}$,由存在m∈N*,使對任意n∈N*,總有Sn<Tn+λ恒成立,
∴$\frac{n(4+5-n)}{2}$<8$[1-(\frac{1}{2})^{n}]$+λ,
∴λ>$-\frac{1}{2}{n}^{2}$+$\frac{9}{2}$n+8×$(\frac{1}{2})^{n}$-8=f(n),
由f(n)=$-\frac{1}{2}$$(n-\frac{9}{2})^{2}$+8×$(\frac{1}{2})^{n}$+$\frac{17}{8}$,
在n≥5時單調(diào)遞減,可得f(5)=$\frac{1}{4}$,f(1)=0,f(2)=1,f(3)=2,f(4)=$\frac{5}{2}$.
故答案為:($\frac{5}{2}$,+∞).

點評 本題考查了等差數(shù)列與等比數(shù)列的通項公式與求和公式、單調(diào)性,考查了推理能力與計算能力,屬于中檔題.

練習冊系列答案
相關習題

科目:高中數(shù)學 來源: 題型:填空題

7.已知向量$\overrightarrow{a}$,$\overrightarrow$,$\overrightarrow{c}$滿足2$\overrightarrow{a}$+$\overrightarrow$=(0,-5,10),$\overrightarrow{c}$=(1,-2,-2),且$\overrightarrow$•$\overrightarrow{c}$=-18,則$\overrightarrow{a}$•$\overrightarrow{c}$=4.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

8.已知實數(shù)a,b滿足($\frac{1}{2}$)a<($\frac{1}{2}$)b,則(  )
A.a${\;}^{\frac{1}{3}}$>b${\;}^{\frac{1}{3}}$B.log2a>log2bC.$\frac{1}{a}$<$\frac{1}$D.sina>sinb

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

15.某市A,B,C,D,E,F(xiàn)六個城區(qū)欲架設光纜,如圖所示,兩點之間的線段及線段上的相應數(shù)字分別表示對應城區(qū)可以架設光纜及所需光纜的長度,如果任意兩個城市之間均有光纜相通,則所需光纜的總長度的最小值是( 。
A.12B.13C.14D.15

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:填空題

2.O是△ABC所在平面上的一點.內(nèi)角A.B.C所對的邊分別是3、4、5,且3$\overrightarrow{OA}$+4$\overrightarrow{OB}$+5$\overrightarrow{OC}$=$\overrightarrow{0}$.若點P在△ABC的邊上.則$\overrightarrow{OA}$•$\overrightarrow{OP}$的取值范圍為[-5,10].

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

12.已知和式$S=\frac{1+2+3+…+n}{n^2}$,當n→+∞時,S無限趨近于一個常數(shù)A,則A可用定積分表示為(  )
A.${∫}_{0}^{1}$xdxB.${∫}_{0}^{1}$$\frac{1}{x}$dxC.${∫}_{0}^{1}$$\sqrt{x}$dxD.${∫}_{0}^{1}$x2dx

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

19.設命題P:?x>0,x2≤1,則¬P為( 。
A.?x>0,x2<1B.?x>0,x2>1C.?x>0,x2>1D.?x>≤0,x2≤1

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

16.下列命題中的真命題是( 。
A.若a>|b|,則a2>b2B.若|a|>b,則a2>b2
C.若a≥b,則a2≥b2D.若a>b,c>d,則ac>bd

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:選擇題

17.設數(shù)列{an}滿足a1=2,an+1=1-$\frac{2}{{a}_{n}+1}$,記數(shù)列{an}的前n項之積為Tn,則T2018=(  )
A.1B.2C.$\frac{1}{3}$D.$\frac{2}{3}$

查看答案和解析>>

同步練習冊答案