18.已知直線l:y=k(x-2)與拋物線C:y2=8x交于A,B兩點(diǎn),點(diǎn)M(-2,4)滿足MA⊥MB,則|AB|=( 。
A.6B.8C.10D.16

分析 先根據(jù)拋物線方程求得焦點(diǎn)坐標(biāo),直線y=k(x-2)過拋物線的焦點(diǎn),將直線方程代入拋物線方程消去y,根據(jù)韋定理表示出x1+x2及x1x2進(jìn)而求得y1y2和y1+y2,由MA⊥MB,即可求得k的值,由弦長公式即可求得|AB|.

解答 解:由拋物線C:y2=8x可得焦點(diǎn)F(2,0),直線y=k(x-2)過拋物線的焦點(diǎn),
代入拋物線方程,得到k2x2-(4k2+8)x+4k2=0,△>0.
設(shè)A(x1,y1),B(x2,y2),
∴x1+x2=$\frac{{4k}^{2}+8}{{k}^{2}}$,x1x2=4;∴y1+y2=$\frac{8}{k}$,y1y2=-16.
由MA⊥MB,可得$\overrightarrow{MA}•\overrightarrow{MB}$═(x1+2,y1-4)•(x2+2,y2-4)
=x1x2+2(x1+x2)+4+y1y2-4(y1+y2)+16=0,
整理得:k2-2k+1=0,解得k=1,
∴x1+x2=12,x1x2=4.
∴|AB|=$\sqrt{{1+k}^{2}}$•$\sqrt{{{(x}_{1}{+x}_{2})}^{2}-{4x}_{1}{•x}_{2}}$=$\sqrt{2}$•$\sqrt{{12}^{2}-4×4}$=16,
故選:D.

點(diǎn)評(píng) 本題考查了直線與拋物線的位置關(guān)系,考查拋物線的標(biāo)準(zhǔn)方程及其性質(zhì)、向量的數(shù)量積公式、弦長公式等基礎(chǔ)知識(shí)與基本技能方法,考查學(xué)生的計(jì)算能力,屬于中檔題.

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:選擇題

8.已知函數(shù)f(x)滿足:f(x)=f(x+2),且當(dāng)x∈[0,2]時(shí),f(x)=(x-1)2,則f($\frac{7}{2}$)等于( 。
A.0B.1C.$\frac{1}{2}$D.$\frac{1}{4}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

9.若隨機(jī)變量X~N(μ,σ2)(σ>0),則有如下結(jié)論:P(μ-σ<X≤μ+σ)=0.6826,P(μ-2σ<X≤μ+2σ)=0.9544,P(μ-3σ<X≤μ+3σ)=0.9974,高二(1)班有40名同學(xué),一次數(shù)學(xué)考試的成績X~N(120,100),理論上說在130分~140分之間的人數(shù)約為( 。
A.8B.5C.10D.12

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

6.已知一個(gè)幾何體的三視圖如圖所示,則該幾何體的表面積是( 。
A.3B.6C.12D.18

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.我市在對(duì)高三學(xué)生的綜合素質(zhì)評(píng)價(jià)中,將其測(cè)評(píng)結(jié)果分為“A、B、C”三個(gè)等級(jí),其中A表示“優(yōu)秀”,B表示“良好”,C表示“合格”.
(1)某校高三年級(jí)有男生1000人,女生700人,為了解性別對(duì)該綜合素質(zhì)評(píng)價(jià)結(jié)果的影響,采用分層抽樣的方法從高三學(xué)生中抽取了85名學(xué)生的綜合素質(zhì)評(píng)價(jià)結(jié)果,其各個(gè)等級(jí)的頻數(shù)統(tǒng)計(jì)如表:
等級(jí)優(yōu)秀良好合格
男生(人)16x8
女生(人)1813y
根據(jù)表中統(tǒng)計(jì)的數(shù)據(jù)填寫下面2×2列聯(lián)表,并判斷是否有95%的把握認(rèn)為“綜合素質(zhì)評(píng)價(jià)測(cè)評(píng)結(jié)果為優(yōu)秀與性別有關(guān)”?
男生女生總計(jì)
優(yōu)秀
非優(yōu)秀
總計(jì)
(2)以(1)中抽取的85名學(xué)生的綜合素質(zhì)評(píng)價(jià)等級(jí)為“合格”的學(xué)生中按分層抽樣隨機(jī)抽取6人.再從這6人中任選2人去參加“提高班”培訓(xùn),求所選6人中恰有2人為男生的概率.
參考公式:K2=$\frac{{n{{(ad-bc)}^2}}}{(a+b)(c+d)(a+c)(b+d)}$,其中n=a+b+c+d.
臨界值表:
P(K2≥k00.150.100.050.0250.010
k02.0722.7063.8415.0246.635

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

3.已知全集為R,集合M={-1,0,1,5},N={x|x2-x-2<0},則M∩N=( 。
A.{0,1,5}B.{-1,0,1}C.{0,1}D.{-1,1}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

10.已知集合A={-1,0,1},B={0,1,2},那么A∩B等于(  )
A.{0}B.{1}C.{0,1}D.{-1,0,1,2}

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

7.當(dāng)x,y滿足條件$\left\{\begin{array}{l}y≥1\\ x-y≤0\\ x+2y-6≤0\end{array}\right.$時(shí),目標(biāo)函數(shù)z=x+y的最小值是( 。
A.2B.2.5C.3.5D.4

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

1.設(shè)等差數(shù)列{an}滿足$\frac{si{n}^{2}{a}_{2}-co{s}^{2}{a}_{2}+co{s}^{2}{a}_{2}co{s}^{2}{a}_{7}-si{n}^{2}{a}_{2}si{n}^{2}{a}_{7}}{sin({a}_{1}+{a}_{8})}$=1,公差d∈(-1,0),若當(dāng)且僅當(dāng)n=11時(shí),數(shù)列{an}的前n項(xiàng)和Sn取得最大值,則首項(xiàng)a1的取值范圍是( 。
A.($\frac{9π}{10}$,π)B.[π,$\frac{11π}{10}$]C.[$\frac{9π}{10}$,π]D.(π,$\frac{11π}{10}$)

查看答案和解析>>

同步練習(xí)冊(cè)答案