相關(guān)習題
 0  229257  229265  229271  229275  229281  229283  229287  229293  229295  229301  229307  229311  229313  229317  229323  229325  229331  229335  229337  229341  229343  229347  229349  229351  229352  229353  229355  229356  229357  229359  229361  229365  229367  229371  229373  229377  229383  229385  229391  229395  229397  229401  229407  229413  229415  229421  229425  229427  229433  229437  229443  229451  266669 

科目: 來源: 題型:解答題

11.求證:$\underset{lim}{x→0}$$\frac{{e}^{\frac{1}{x}+1}}{{e}^{\frac{1}{x}}-1}$不存在.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知復數(shù)z=a2-1-(a2-3a+2)i,a∈R.
(1)若z是純虛數(shù)時,求a的值;
(2)若z是虛數(shù),且z的實部比虛部大時,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

9.下列命題中正確的是(  )
A.若xn>0,$\underset{lim}{n→∞}$xn=M,則M>0
B.若$\underset{lim}{n→∞}$(xn-yn)=0,則$\underset{lim}{n→∞}$xn=$\underset{lim}{n→∞}$yn
C.若$\underset{lim}{n→∞}$${x}_{n}^{2}$=N2,則$\underset{lim}{n→∞}$xn=N
D.若$\underset{lim}{n→∞}$xn=p,則$\underset{lim}{n→∞}$${x}_{n}^{2}$=p2

查看答案和解析>>

科目: 來源: 題型:選擇題

8.定義域為R的函數(shù)f(x)滿足f(x+2)=2f(x),當x∈[0,2)時,f(x)=$\left\{{\begin{array}{l}{{x^2}-2x+13,x∈[{0,1})}\\{xlnx,x∈[{1,2})}\end{array}}$,若當x∈[-4,-2)時,函數(shù)f(x)≥t2+2t恒成立,則實數(shù)t的取值范圍為( 。
A.-3≤t≤0B.-3≤t≤1C.-2≤t≤0D.0≤t≤1

查看答案和解析>>

科目: 來源: 題型:選擇題

7.已知θ∈(-$\frac{π}{2}$,$\frac{π}{2}$)且sinθ+cosθ=a,其中a∈(0,1),則tanθ的可能取值是(  )
A.-3B.3或$\frac{1}{3}$C.$-\frac{1}{3}$D.-3或$-\frac{1}{3}$

查看答案和解析>>

科目: 來源: 題型:解答題

6.四邊形ABCD為菱形,ACFE為平行四邊形,且平面ACFE⊥平面ABCD,設(shè)BD與AC相交于點G,H為FG的中點,AB=BD=2,AE=$\sqrt{3}$,CH=$\frac{{\sqrt{3}}}{2}$.
(Ⅰ)求證:CH⊥平面BDF;
(Ⅱ)若Q為△DEF的重心,求QH與平面BEF所成角的正弦值.

查看答案和解析>>

科目: 來源: 題型:選擇題

5.已知函數(shù)f(x)=$\left\{\begin{array}{l}{\frac{sinax}{x},x<0}\\{b,x=0}\\{xcos\frac{1}{x}+2,x>0}\end{array}\right.$在定義域內(nèi)連續(xù),則a+b=( 。
A.4B.2C.1D.0

查看答案和解析>>

科目: 來源: 題型:選擇題

4.已知函數(shù)f(x)=$\frac{3}{2}$sin2x+$\frac{{\sqrt{3}}}{2}$cos2x+$\frac{π}{12}$的圖象關(guān)于點(a,b)成中心對稱圖形,若a∈(-$\frac{π}{2}$,0)則a+b=(  )
A.πB.$\frac{π}{2}$C.$\frac{π}{12}$D.0

查看答案和解析>>

科目: 來源: 題型:解答題

3.△ABC的內(nèi)角A、B、C所對的邊分別為a,b,c,已知向量$\overrightarrow m$=(cosA,b),$\overrightarrow n$=(sinA,a),若$\overrightarrow m$,$\overrightarrow n$共線,且B為鈍角.
(1)證明:B-A=$\frac{π}{2}$;
(2)若b=2$\sqrt{3}$,a=2,求△ABC面積.

查看答案和解析>>

科目: 來源: 題型:選擇題

2.給出下列四個命題,其中正確的命題是( 。
①若cos(A-B)cos(B-C)cos(C-A)=1,則△ABC是等邊三角形;
②若sinA=cosB,則△ABC是直角三角形;
③若cosAcosBcosC<0,則△ABC是鈍角三角形;
④若sin2A=sin2B,則△ABC是等腰三角形.
A.①②B.③④C.①③D.②④

查看答案和解析>>

同步練習冊答案