相關(guān)習(xí)題
 0  230631  230639  230645  230649  230655  230657  230661  230667  230669  230675  230681  230685  230687  230691  230697  230699  230705  230709  230711  230715  230717  230721  230723  230725  230726  230727  230729  230730  230731  230733  230735  230739  230741  230745  230747  230751  230757  230759  230765  230769  230771  230775  230781  230787  230789  230795  230799  230801  230807  230811  230817  230825  266669 

科目: 來源: 題型:解答題

2.如圖,在四棱柱ABCD-A1B1C1D1中,側(cè)面ADD1A1⊥底面ABCD,D1A=D1D=$\sqrt{2}$,底面ABCD為直角梯形,其中BC∥AD,AB⊥AD,AD=2AB=2BC=2
(1)在平面ABCD內(nèi)找一點(diǎn)F,使得D1F⊥平面AB1C;
(2)求二面角C-B1A-B的平面角的余弦值.

查看答案和解析>>

科目: 來源: 題型:解答題

1.如圖,E是圓內(nèi)兩弦AB和CD的交點(diǎn),F(xiàn)為AD延長(zhǎng)線上一點(diǎn),F(xiàn)G切圓于G,且FE=FG.
(I)證明:FE∥BC;
(Ⅱ)若AB⊥CD,∠DEF=30°,求$\frac{AF}{FG}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.已知α,β是兩個(gè)不同的平面,a,b,c是三條不同的直線,則下列條件中,是a∥b的充分條件的個(gè)數(shù)為(  )
①α∥β,a?α,b∥β;②a∥c,且b∥c;
③α∩β=c,a?α,b?β,a∥β,b∥α;④a⊥c,且b⊥c.
A.2B.0C.3D.1

查看答案和解析>>

科目: 來源: 題型:填空題

19.在ABC中,a=1,B=45°,S△ABC=2,則△ABC的外接圓的直徑是5$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.在△ABC中,若點(diǎn)D滿足$\overrightarrow{BD}=2\overrightarrow{DC}$,則$\overrightarrow{AD}$=( 。
A.$\frac{1}{3}\overrightarrow{AC}+\frac{2}{3}\overrightarrow{AB}$B.$\frac{5}{3}\overrightarrow{AB}-\frac{2}{3}\overrightarrow{AC}$C.$\frac{2}{3}\overrightarrow{AC}-\frac{1}{3}\overrightarrow{AB}$D.$\frac{2}{3}\overrightarrow{AC}+\frac{1}{3}\overrightarrow{AB}$

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知函數(shù)$f(x)=lnx-\frac{1}{4}x+\frac{3}{4x}-1$,g(x)=x2-2bx+4,若對(duì)任意x1∈(0,2),存在x2∈[1,2],使f(x1)≥g(x2),則實(shí)數(shù)b的取值范圍是[$\frac{17}{8}$,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

16.下列函數(shù)中,既是偶函數(shù)又在區(qū)間(0,+∞)上單調(diào)遞減的是( 。
A.y=x3B.y=ln|x|C.y=sin($\frac{π}{2}$-x)D.y=-x2-1

查看答案和解析>>

科目: 來源: 題型:選擇題

15.函數(shù)f(x)=sinx+2x,若對(duì)于區(qū)間[-π,π]上的任意x1,x2,都有|f(x1)-f(x2)|≤t,則實(shí)數(shù)t的最小值是( 。
A.B.C.πD.0

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知M=$[\begin{array}{l}{1}&{-2}\\{-2}&{1}\end{array}]$,α=$[\begin{array}{l}{3}\\{1}\end{array}]$,試計(jì)算M5α.

查看答案和解析>>

科目: 來源: 題型:填空題

13.已知向量$\overrightarrow{a}$,$\overrightarrow$滿足|$\overrightarrow{a}$|=1,|$\overrightarrow$|=2$\sqrt{2}$,|$\overrightarrow{a}$-$\overrightarrow$|=2,則$\overrightarrow{a}$•$\overrightarrow$=$\frac{5}{2}$.

查看答案和解析>>

同步練習(xí)冊(cè)答案